Let $\varphi=\{\varphi_k\}_{k=-\infty}^\infty$ denote the extended Takenaka--Malmquist system on unit circle $\mathbb T$ and let $\sigma_{n,\varphi}(f),$ $f\in L^1(\mathbb T)$, be Fej\'er-type operator based $\varphi$, introduced by V. N. Rusak. We give convergence criteria for $\sigma_{n,\varphi}(f)$ in Banach space $X(\mathbb T):=L^p(\mathbb T)\vee C(\mathbb $p\ge 1$. Also we prove Voronovska...