نتایج جستجو برای: positive semidefinite matrix
تعداد نتایج: 1004192 فیلتر نتایج به سال:
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
The Lanczos method with shift-invert technique is exploited to approximate the symmetric positive semidefinite Toeplitz matrix exponential. The complexity is lowered by the Gohberg-Semencul formula and the fast Fourier transform. Application to the numerical solution of an integral equation is studied. Numerical experiments are carried out to demonstrate the effectiveness of the proposed method...
Abstract. Let G be a simple, undirected graph. Positive semidefinite (PSD) zero forcing on G is based on the following 1 color-change rule: Let W1,W2, . . . ,Wk be the sets of vertices of the k connected components in G − B (where B is a set of blue 2 vertices). If w ∈Wi is the only white neighbor of some b ∈ B in the graph G[B∪Wi], then we change w to blue. A minimum positive 3 semidefinite ze...
The positive semidefinite (psd) rank of a nonnegative real matrix M is the smallest integer k for which it is possible to find psd matrices Ai assigned to the rows of M and Bj assigned to the columns of M , of size k ˆ k, such that pi, jq-entry of M is the inner product of Ai and Bj . This is an example of a cone rank of a nonnegative matrix similar to nonnegative rank, and was introduced for s...
The Euclidean distance matrix (EDM) completion problem and the positive semidefinite (PSD) matrix completion problem are considered in this paper. Approaches to determine the location of a point in a linear manifold are studied, which are based on a referential coordinate set and a distance vector whose components indicate the distances from the point to other points in the set. For a given ref...
The positive semidefinite Procrustes (PSDP) problem is the following: given rectangular matrices X and B, find the symmetric positive semidefinite matrix A that minimizes the Frobenius norm of AX − B. No general procedure is known that gives an exact solution. In this paper, we present a semi-analytical approach to solve the PSDP problem. First, we characterize completely the set of optimal sol...
In this talk we deal with a more precise estimates for the matrix versions of Young, Heinz, and Hölder inequalities. First we give an improvement of the matrix Heinz inequality for the case of the Hilbert-Schmidt norm. Then, we refine matrix Young-type inequalities for the case of Hilbert-Schmidt norm, which hold under certain assumptions on positive semidefinite matrices appearing therein. Fin...
Sparsity-Preserving Difference of Positive Semidefinite Matrix Representation of Indefinite Matrices
We consider the problem of writing an arbitrary symmetric matrix as the difference of two positive semidefinite matrices. We start with simple ideas such as eigenvalue decomposition. Then, we develop a simple adaptation of the Cholesky that returns a difference-of-Cholesky representation of indefinite matrices. Heuristics that promote sparsity can be applied directly to this modification.
The arithmetic-geometric mean inequality for singular values due to Bhatia and Kittaneh says that 2sj(AB ∗) ≤ sj(A∗A + B∗B), j = 1, 2, . . . for any matrices A,B. We first give new proofs of this inequality and its equivalent form. Then we use it to prove the following trace inequality: Let A0 be a positive definite matrix and A1, . . . , Ak be positive semidefinite matrices. Then tr k ∑
2 Let H = [ M K K∗ N ] be a Hermitian matrix. It is known that the eigenvalues of M ⊕N are 3 majorized by the eigenvalues of H . If, in addition, H is positive semidefinite and the block K 4 is Hermitian, then the following reverse majorization inequality holds for the eigenvalues: 5
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید