نتایج جستجو برای: principal ideal multiplication module
تعداد نتایج: 297695 فیلتر نتایج به سال:
Let R be a countable, principal ideal domain which is not a field and A be a countable R-algebra which is free as an R-module. Then we will construct an א1-free R-module G of rank א1 with endomorphism algebra EndRG = A. Clearly the result does not hold for fields. Recall that an R-module is א1-free if all its countable submodules are free, a condition closely related to Pontryagin’s theorem. Th...
1. [10 points] Determine whether the following statements are true or false (you have to include proofs/counterexamples): (a) Let R be an integral domain, F – a free R-module of finite rank, and M – a torsion R-module. Then there is no injective homomorphism from F to M . Solution: True. Suppose there was an injective homomorpism φ : F → M . Then let N = φ(F ); N is a submodule of M , and there...
In this paper, persents the definitions of strongly prime ideal, strongly prime N-subgroup, Pseudo-valuation near ring and Pseudo-valuation N-group. Some of their properties have also been proven by theorems. Then it is shown that, if N be near ring with quotient near-field K and P be a strongly prime ideal of near ring N, then is a strongly prime ideal of , for any multiplication subset S of...
The purpose of this paper is to explore some basic facts from radical of submodules in the free multiplication R-module M = Rn. Mathematics Subject Classification: 13C13, 13C99
All rings are assumed to be commutative with identity. A generalized GCD ring (G-GCD ring) is a ring (zero-divisors admitted) in which the intersection of every two finitely generated (f.g.) faithful multiplication ideals is a f.g. faithful multiplication ideal. Various properties of G-GCD rings are considered. We generalize some of Jäger’s and Lüneburg’s results to f.g. faithful multiplication...
If G is a finite abelian group, R is a principal ideal domain with field of quotients an algebraic number field K which splits G, and if A is a Hopf algebra order in KG, then the Grothendieck ring of the category of finitely generated A-modules is isomorphic to the Grothendieck ring of the category of finitely generated RG-modules. The Grothendieck group a£ of the category of finitely generated...
Let $R$ be a commutative ring and let $I$ be an ideal of $R$. In this paper, we will introduce the notions of 2-absorbing $I$-prime and 2-absorbing $I$-second submodules of an $R$-module $M$ as a generalization of 2-absorbing and strongly 2-absorbing second submodules of $M$ and explore some basic properties of these classes of modules.
Let M be an Artinian module over the commutative ring A (with nonzero identity) and a p spec A be such that a is a finitely generated ideal of A and aM = M. Also suppose that H = H where H. = M/ (0: a )for i
If N is a submodule of the R-module M , and a ∈ R, let λa : M/N → M/N be multiplication by a. We say that N is a primary submodule of M if N is proper and for every a, λa is either injective or nilpotent. Injectivity means that for all x ∈ M , we have ax ∈ N ⇒ x ∈ N . Nilpotence means that for some positive integer n, aM ⊆ N , that is, a belongs to the annihilator of M/N , denoted by ann(M/N). ...
it is shown that a commutative reduced ring r is a baer ring if and only if it is a cs-ring; if and only if every dense subset of spec (r) containing max (r) is an extremally disconnected space; if and only if every non-zero ideal of r is essential in a principal ideal generated by an idempotent.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید