نتایج جستجو برای: radial basis function rbf network
تعداد نتایج: 2160828 فیلتر نتایج به سال:
This paper presents an approach to approximate the forward and inverse dynamic behaviours of a magnetorheological (MR) damper using evolving radial basis function (RBF) networks. Due to the highly nonlinear characteristics of MR dampers, modelling of MR dampers becomes a very important problem to their applications. In this paper, an alternative representation of the MR damper in terms of evolv...
On page 8 of the paper (page 3209 of the volume), in the seventh line of the second-to-last paragraph of section 5.
This paper investigates the application of a radial basis function (RBF) neural network to the prediction of field strength based on topographical and morphographical data. The RBF neural network is a two-layer localized receptive field network whose output nodes from a combination of radial activation functions computed by the hidden layer nodes. Appropriate centers and connection weights in t...
A necessary condition for monitoring and control of a Power System (PS) is possessing a credible model of this system. The PS model for a need of dispatchers in national control centre is created in real time. An important element of such a model is a topology model. PS Topology Verification (PSTV) is an important problem in PS engineering. Often this problem is solved together with PS state es...
This paper considers the nonlinear systems modeling problem for control. A structured nonlinear parameter optimization method (SNPOM) adapted to radial basis function (RBF) networks and an RBF network-style coefficients autoregressive model with exogenous variable model parameter estimation is presented. This is an off-line nonlinear model parameter optimization method, depending partly on the ...
In this paper a neural network for approximating function is described. The activation functions of the hidden nodes are the Radial Basis Functions (RBF) whose parameters are learnt by a two-stage gradient descent strategy. A new growing radial basis functions-node insertion strategy with different radial basis functions is used in order to improve the net performances. The learning strategy is...
A signal su ers from nonlinear, linear, and additive distortion when transmitted through a channel. Linear equalizers are commonly used in receivers to compensate for linear channel distortion. As an alternative, nonlinear equalizers have the potential to compensate for all three sources of channel distortion. Previous authors have shown that nonlinear feedforward equalizers based on either mul...
We propose an Euro banknote recognition system using two types of neural networks; a three-layered perceptron and a Radial Basis Function (RBF) network. A three-layered perceptron is well known method for pattern recognition and is also a very effective tool for classifing banknotes. An RBF network has a potential to reject invalid data because it estimates the probability distribution of the s...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید