نتایج جستجو برای: root system architecture
تعداد نتایج: 2485865 فیلتر نتایج به سال:
Root system architecture is a major determinant of water and nutrient acquisition as well as stress tolerance in plants. The Mediator complex is a conserved multiprotein complex that acts as a universal adaptor between transcription factors and the RNA polymerase II. In this article, we characterize possible roles of the MEDIATOR8 (MED8) and MED25 subunits of the plant Mediator complex in the r...
Root system architecture is a major determinant of water and nutrient acquisition as well as stress tolerance in plants. The Mediator complex is a conserved multiprotein complex that acts as a universal adaptor between transcription factors and the RNA polymerase II. In this article, we characterize possible roles of the MEDIATOR8 (MED8) andMED25 subunits of the plant Mediator complex in the re...
When growing under limiting phosphate (P) conditions, Arabidopsis thaliana plants show dramatic changes in root architecture, including a reduction in primary root length, increased formation of lateral roots and greater formation of root hairs. Here we report that primary root growth inhibition by low P is caused by a shift from an indeterminate to a determinate developmental program. In the p...
Short-Root (SHR) is a well-characterized regulator of radial patterning and indeterminacy of the Arabidopsis (Arabidopsis thaliana) primary root. However, its role during the elaboration of root system architecture remains unclear. We report that the indeterminate wild-type Arabidopsis root system was transformed into a determinate root system in the shr mutant when growing in soil or agar. The...
11 ● Background and Aims 12 Root architecture development determines the sites in soil where roots provide input of carbon 13 and take up water and solutes. However, root architecture is difficult to determine 14 experimentally when grown in opaque soil. Thus, root architectural models have been widely 15 used and been further developed into functional-structural models that simulate the fate o...
The ability of plants to respond appropriately to nutrient availability is of fundamental importance for their adaptation to the environment. Nutrients such as nitrate, phosphate, sulfate and iron act as signals that can be perceived. These signals trigger molecular mechanisms that modify cell division and cell differentiation processes within the root and have a profound impact on root system ...
Plant root system morphology is dramatically influenced by various environmental cues. The adaptation of root system architecture to environmental constraints, which mostly depends on the formation and growth of lateral roots, is an important agronomic trait. Lateral root development is regulated by the external signals coordinating closely with intrinsic signaling pathways. MADS-box transcript...
During a plant’s lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and m...
Water and nutrient availability limit plant growth in a11 but a very few natural ecosystems. They limit yield in most agricultural ecosystems, and in the United States and other industrialized nations, intensive irrigation and fertilization have generated serious environmental problems. The acquisition of soil resources by plant root systems is therefore a subject of considerable interest in ag...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید