Let A be a positive (semidefinite) bounded linear operator acting on complex Hilbert space \(\big ({\mathcal {H}}, \langle \cdot , \rangle \big )\). The semi-inner product \({\langle x, y\rangle }_A := Ax, \), \(x, y\in {\mathcal {H}}\) induces seminorm \({\Vert \Vert }_A\) \({\mathcal {H}}\). T an A-bounded {H}}\), the A-numerical radius of is given by $$\begin{aligned} \omega _A(T) = \sup \Bi...