نتایج جستجو برای: semigroup

تعداد نتایج: 6004  

2008
E. Iwaki E. Jespers S. O. Juriaans A. C. Souza Filho

In 1996 Jespers and Wang classified finite semigroups whose integral semigroup ring has finitely many units. In a recent paper, Iwaki-Juriaans-Souza Filho continued this line of research by partially classifying the finite semigroups whose rational semigroup algebra contains a Zorder with hyperbolic unit group. In this paper we complete this classification by handling the case in which the semi...

Journal: :SIAM J. Discrete Math. 2009
Dávid Kunszenti-Kovács

We consider a transport process on an infinite network and, using the corresponding flow semigroup as in Dorn (Semigroup Forum 76:341–356, 2008), investigate its long term behavior. Combining methods from functional analysis, graph theory and stochastics, we are able to characterize the networks for which the flow semigroup converges strongly to a periodic group.

Journal: :IJAC 2012
Mária B. Szendrei

Each factor semigroup of a free restriction (ample) semigroup over a congruence contained in the least cancellative congruence is proved to be embeddable into a W -product of a semilattice by a monoid. Consequently, it is established that each restriction semigroup has a proper (ample) cover embeddable into such a W -product.

2009
DOROTA KRASSOWSKA J. Matkowski

Given continuous functions M and N of two variables, it is shown that if in a continuous iteration semigroup with only (M,N)-convex or (M,N)-concave elements there are two (M,N)-affine elements, then M = N and every element of the semigroup is M -affine. Moreover, all functions in the semigroup either are M -convex or M -concave.

2016
VICTORIA GOULD MÁRIA B. SZENDREI

Each restriction semigroup is proved to be embeddable in a factorisable restriction monoid, or, equivalently, in an almost factorisable restriction semigroup. It is also established that each restriction semigroup has a proper cover which is embeddable in a semidirect product of a semilattice by a group.

2011
J. PASHAZADEH Saeid Azam

We define algebras of triple semigroup and DeMorgan triple semigroup and by defining three Mann’s compositions and one unary operation on the set of 3-place(ternary) functions over some set, we construct a DeMorgan triple semigroup of 3-place (ternary) functions and so find an abstract characterization of this algebras.

2008
MARCEL JACKSON MIKHAIL VOLKOV

We prove that every semigroup S whose quasivariety contains a 3-nilpotent semigroup or a semigroup of index more than 2 has no finite basis for its quasi-identities provided that one of the following properties holds: • S is finite; • S has a faithful representation by injective partial maps on a set; • S has a faithful representation by order preserving maps on a chain. As a corollary it is sh...

2008
Jaroslav Ježek Tomáš Kepka Petr Němec

Every commutative nil-semigroup of index 2 can be imbedded into such a semigroup without irreducible elements.

2013
D. Madhusudhana Rao

T then it is proved that (1) ) ( ) ( ) ( 0 1 2 A N A N A N A    (2) N0(A) = A2, N1(A) is a semiprime ideal of T containing A, N2(A) = A4 are equivalent, where No(A) = The set of all A-potent elements in T, N1(A) = The largest ideal contained in No(A), N2(A) = The union of all A-potent ideals. If A is a semipseudo symmetric ideal of a ternary semigroup then it is proved that N0(A) = N1(A) = N...

Journal: :CoRR 2010
Yair Hartman

Abstract. In this article we consider semigroups of transformations of cellular automata which act on a fixed shift space. In particular, we are interested in two properties of these semigroups which relate to “largeness”. The first property is ID and the other property is maximal commutativity (MC). A semigroup has the ID property if the only infinite invariant closed set (with respect to the ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید