نتایج جستجو برای: single layer graphene sheets
تعداد نتایج: 1183612 فیلتر نتایج به سال:
The catalytic cutting of few-layer graphene is nowadays a hot topic in materials research due to its potential applications in the catalysis field and the graphene nanoribbons fabrication. We show here a 3D analysis of the nanostructuration of few-layer graphene by iron-based nanoparticles under hydrogen flow. The nanoparticles located at the edges or attached to the steps on the FLG sheets cre...
Graphene that is a single hexagonal layer of carbon atoms with very high intrinsic charge carrier mobility (more than 200 000 cm2/Vs at 4.2 K for suspended samples; Bolotin, et al., 2008) attracts attention as a promising material for future nanoelectronics. During last few years, significant advancement has been made in preparation of large-area graphene. The lateral sizes of substrates for gr...
Nanoelectrode ensembles (NEEs) have been fabricated by the electrodeposition of Au nanoparticles (AuNPs) on single-layer graphene oxide (GO) sheets coated on a glassy carbon electrode (GCE). The fabricated NEEs show a typical sigmoidal shaped voltammetric profile, arising from the low coverage density of AuNPs on GCE and large distance among them, which can be easily controlled by varying the e...
Sheets of graphene and arrays of single-walled carbon nanotubes (SWNTs) are formed separately using chemical vapor deposition techniques onto different optimized growth substrates. Techniques of transfer printing provide a route to integration, yielding two terminal devices and transistors in which patterned structures of graphene form the electrodes and the SWNTs arrays serve as the semiconduc...
The observation of single sheets of graphite (graphene) presents new possibilities for carbon-based nanoelectronics. We report defect tolerant configurations for a nearly reflectionless 120 degrees turn and nearly reflectionless symmetric and asymmetric splitters, which can be cut from graphene. Connections between zigzag strips of different widths can be made with either low or high reflectanc...
As an atomically thin sheet of carbon atoms packed in a twodimensional (2D) honeycomb lattice with excellent electronic, thermal, and mechanical properties, graphene has shown great potential for a wide range of applications. Examples include the use of graphene and its derivatives as transparent conductive electrodes or active materials in solar cells, counter electrodes in dye-sensitized sola...
Since Geim and Novoselov’s successful production of high quality graphene, its unique properties have found a number of applications. But graphene is not an exotic chemical compound; instead, it is a sheet of graphite, one atom think. Before 2008, the only way to produce graphene was through successive pealing of graphite with scotch tape until graphite flakes as thin as 1 atomic layer were lef...
We have imaged a freestanding graphene sheet of 210 nm in diameter with 2 Å resolution by combining coherent diffraction and holography with low-energy electrons. The entire sheet is reconstructed from a single diffraction pattern displaying the arrangement of 660.000 individual graphene unit cells at once. Given the fact that electrons with kinetic energies of the order of 100 eV do not damage...
Single-distilled water encapsulated in graphene pockets has been studied by aberration-corrected high-resolution transmission electron microscopy and electron energy loss spectroscopy at an acceleration voltage of 80 kV. Inside the graphene pockets, crystallization and in situ crystal growth are reported and identified as the insoluble AII phase of CaSO4 (anhydrite) in a quasi-two-dimensional s...
Crystalline surface layer proteins (S-layer proteins) have considerable potential for the crystalline arrays in biotechnology, biomimetics and nonlife applications, including areas such as microelectronics and molecular nanotechnology. The extensive application potential of surface layers in nanobiotechnology is according to the particular inherent attributes of the single molecular arrays cons...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید