نتایج جستجو برای: thermoelectric power
تعداد نتایج: 494595 فیلتر نتایج به سال:
Thermoelectric materials can convert waste heat into usable power and thus have great potential as an energy technology. However, the thermoelectric efficiency of a material is quantified by its figure of merit, which has historically remained stubbornly low. One possible avenue towards increasing the figure of merit is through the use of low-dimensional nanograined materials. In such a system ...
Recently, hole-doped GeSe materials have been predicted to exhibit extraordinary thermoelectric performance owing largely to extremely low thermal conductivity. However, experimental research on the thermoelectric properties of GeSe has received less attention. Here, we have synthesized polycrystalline Na-doped GeSe compounds, characterized their crystal structure, and measured their thermoelec...
Peltier technology opens new opportunities for special applications. In the current project, this technology was applied to design and fabricate a portable thermoelectric beverage cooler and thermoelectric cup. The simulation and results of the experiment showed that the common beverage cooler is not a suitable design for ignoring the effect of natural convection in cooling. In our thermoel...
Use of a thermoelectric component (TEC) for an LED module cooling will be studied. The issue will be approached by revealing the operation of a thermoelectric component known also as Peltier element, and the main equations describing its behaviour. An experimental setup including an LED module, a TEC, an heatsink and a fan will be build. Heat dissipation and the electrical performance measureme...
We present theoretically that the cross-plane Seebeck coefficient of InGaAs/ InGaAlAs III–V semiconductor superlattices can be significantly enhanced through miniband transport at low temperatures. The miniband dispersion curves are calculated by self-consistently solving the Schrödinger equation with the periodic potential, and the Poisson equation taking into account the charge transfer betwe...
Thermoelectric materials have generated interest as a means of increasing the efficiency of power generation through the scavenging of waste heat. Materials containing nanometer-sized structural and compositional features can exhibit enhanced thermoelectric performance due to the decoupling of certain electrical and thermal properties, but the extent to which these features can be controlled is...
Ti-based silicide quantum dot superlattices (QDSLs) are grown by reduced-pressure chemical vapor deposition. They are made of titanium-based silicide nanodots scattered in an n-doped SiGe matrix. This is the first time that such nanostructured materials have been grown in both monocrystalline and polycrystalline QDSLs. We studied their crystallographic structures and chemical properties, as wel...
⎯ A thermoelectric energy scavenging microsystem is proposed, optimized to convert the small thermal power available in human-body applications. A Lithium solid-state thin-film battery is integrated in the same device as well as the ultra low-power electronics to charge battery and perform DC-DC conversion.
The thermoelectric properties of a poly(3-hexylthiophene) (P3HT) nanofiber mat which has higher crystallinity-and thus exhibits larger carrier mobility-than a non-fibrous P3HT film, were investigated. No significant difference was observed in the maximum values of the power factor between the P3HT nanofiber mat and the P3HT film. However, the thermal conductivity of the nanofiber mat was less t...
We report a new 'spark erosion' technique for producing high-quality thermoelectric nanoparticles at a remarkably high rate and with enhanced thermoelectric properties. The technique was utilized to synthesize p-type Bi(0.5)Sb(1.5)Te(3) nanoparticles with a production rate as high as 135 g h(-1), using a relatively small laboratory apparatus and low energy consumption. The compacted nanocompos...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید