Let $$n\ge 3$$ be an integer and p a prime with $$p\equiv 1\pmod {n}$$ . In this paper, we show that $$\begin{aligned} {}_nF_{n-1}\bigg [\begin{array}{llll} \frac{n-1}{n}&{}\frac{n-1}{n}&{}\ldots &{}\frac{n-1}{n}\\ &{}1&{}\ldots &{}1\end{array}\bigg | \, 1\bigg ]_{p-1}\equiv -\Gamma _p\bigg (\frac{1}{n}\bigg )^n\pmod {p^3}, \end{aligned}$$ where the truncated hypergeometric series x_1&{}x_2&{}\...