نتایج جستجو برای: 2 absorbing i second submodule
تعداد نتایج: 3734149 فیلتر نتایج به سال:
Let R be a commutative ring with identity and M be a unitary R-module. Let : S(M) −! S(M) [ {;} be a function, where S(M) is the set of submodules ofM. Suppose n 2 is a positive integer. A proper submodule P of M is called(n − 1, n) − -prime, if whenever a1, . . . , an−1 2 R and x 2 M and a1 . . . an−1x 2P(P), then there exists i 2 {1, . . . , n − 1} such that a1 . . . ai−1ai+1 . . . an−1x 2 P...
in this paper, we introduce the dual notion of strongly top modules and study some of the basic properties of this class of modules.
RESULTS ON N-ABSORBING IDEALS OF COMMUTATIVE RINGS by Alison Elaine Becker The University of Wisconsin-Milwaukee, 2015 Under the Supervision of Dr. Allen Bell Let R be a commutative ring with 1 6= 0. In his paper On 2-absorbing ideals of commutative rings, Ayman Badawi introduces a generalization of prime ideals called 2-absorbing ideals, and this idea is further generalized in a paper by Ander...
Let $R$ be a multiplicative hyperring. In this paper, we introduce and study the concept of n-absorbing hyperideal which is a generalization of prime hyperideal. A proper hyperideal $I$ of $R$ is called an $n$-absorbing hyperideal of $R$ if whenever $alpha_1o...oalpha_{n+1} subseteq I$ for $alpha_1,...,alpha_{n+1} in R$, then there are $n$ of the $alpha_i^,$s whose product ...
the submodules with the property of the title ( a submodule $n$ of an $r$-module $m$ is called strongly dense in $m$, denoted by $nleq_{sd}m$, if for any index set $i$, $prod _{i}nleq_{d}prod _{i}m$) are introduced and fully investigated. it is shown that for each submodule $n$ of $m$ there exists the smallest subset $d'subseteq m$ such that $n+d'$ is a strongly dense submodule of $m$...
Let $M$ be a module over a commutative ring $R$ and let $N$ be a proper submodule of $M$. The total graph of $M$ over $R$ with respect to $N$, denoted by $T(Gamma_{N}(M))$, have been introduced and studied in [2]. In this paper, A generalization of the total graph $T(Gamma_{N}(M))$, denoted by $T(Gamma_{N,I}(M))$ is presented, where $I$ is an ideal of $R$. It is the graph with all elements of $...
let $m$ be a module over a commutative ring $r$ and let $n$ be a proper submodule of $m$. the total graph of $m$ over $r$ with respect to $n$, denoted by $t(gamma_{n}(m))$, have been introduced and studied in [2]. in this paper, a generalization of the total graph $t(gamma_{n}(m))$, denoted by $t(gamma_{n,i}(m))$ is presented, where $i$ is an ideal of $r$. it is the graph with all elements of $...
The submodules with the property of the title ( a submodule $N$ of an $R$-module $M$ is called strongly dense in $M$, denoted by $Nleq_{sd}M$, if for any index set $I$, $prod _{I}Nleq_{d}prod _{I}M$) are introduced and fully investigated. It is shown that for each submodule $N$ of $M$ there exists the smallest subset $D'subseteq M$ such that $N+D'$ is a strongly dense submodule of $M$ and $D'bi...
Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. Suppose that $phi:S(M)rightarrow S(M)cup lbraceemptysetrbrace$ be a function where $S(M)$ is the set of all submodules of $M$. A proper submodule $N$ of $M$ is called an $(n-1, n)$-$phi$-classical prime submodule, if whenever $r_{1},ldots,r_{n-1}in R$ and $min M$ with $r_{1}ldots r_{n-1}min Nsetminusphi(N)$, then $r_{1...
let r be a commutative ring with identity and m be a unitary r-module. let : s(m) −! s(m) [ {;} be a function, where s(m) is the set of submodules ofm. suppose n 2 is a positive integer. a proper submodule p of m is called(n − 1, n) − -prime, if whenever a1, . . . , an−1 2 r and x 2 m and a1 . . . an−1x 2p(p), then there exists i 2 {1, . . . , n − 1} such that a1 . . . ai−1ai+1 . . . an−1x...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید