نتایج جستجو برای: adaptive fuzzy kalman filter
تعداد نتایج: 391084 فیلتر نتایج به سال:
This paper investigates the implementation of three variations of fuzzy logic based Kalman filters namely centralized, decentralized and federated. These fuzzy logic adaptive Kalman filter (FLA-KF) algorithms are implemented in an unmanned surface vehicle (USV) application. Simulation results demonstrate the algorithms’ capabilities under different types of sensor faults and the results are com...
This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the sy...
Originaly, a filter is a physical device for removing unwanted components of mixtures (gas, liquid, solid). In the area of telecommunications, signals are mixtures of different frequencies, and the term of filter is used to describe the attenuation of the unwanted frequencies. Since 1940, the concept of a filter was extended to the separation of signals from noise. With Kalman filter, the meani...
We consider the problem of nonlinear filtering under the circumstance of unknown covariance statistic of the measurement noise. A novel adaptive unscented Kalman filter (UKF) integrating variational Bayesian methods and fuzzy logic techniques is proposed in this paper. It is called fuzzy adaptive variational Bayesian UKF (FAVBUKF). Firstly, the sufficient statistics of the measurement noise var...
The neural network's performance can be measured by efficiency and accuracy. The major disadvantages of neural network approach are that the generalization capability of neural networks is often significantly low, and it may take a very long time to tune the weights in the net to generate an accurate model for a highly complex and nonlinear systems. This paper presents a novel Neuro-fuzzy archi...
Low cost automation often requires accurate positioning. This happens whenever a vehicle or robotic manipulator is used to move materials, parts or minerals on the factory floor or outdoors. In last few years, such vehicles and devices are mostly autonomous. This paper presents the method of sensor fusion based on the Adaptive Fuzzy Kalman Filtering. This method has been applied to fuse positio...
In this paper, the application of the fuzzy interacting multiple model unscented Kalman filter (FUZZY-IMMUKF) approach to integrated navigation processing for the maneuvering vehicle is presented. The unscented Kalman filter (UKF) employs a set of sigma points through deterministic sampling, such that a linearization process is not necessary, and therefore the errors caused by linearization as ...
This paper presents a new hybrid methodology for learning Sugeno-type fuzzy models via subtractive clustering, Adaptive Boosting Regression (AdaBoostR) and Unscented Kalman Filter (UKF). The generated fuzzy models are used for modeling nonlinear benchmark processes. In the proposed procedure, first one fuzzy rule is generated by subtractive clustering algorithm from available data of a given no...
This paper applies two Artificial Intelligence (AI) techniques, fuzzy logic and expert system, to enhance the Kalman filter-based MEMS INS/GPS integration. For better INS error control, the expert knowledge on vehicle dynamics is utilized to simplify dynamics models and to extend measurement update schemes in the velocity filter. To optimize position fusion, a fuzzy inference system is develope...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید