نتایج جستجو برای: ampa receptors

تعداد نتایج: 226759  

Journal: :Advances in neurology 1999
M A Rogawski S D Donevan

alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are key mediators of seizure spread in the nervous system and represent promising targets for antiepileptic drugs. There is emerging evidence that AMPA receptors may play a role in epileptogenesis and in seizure-induced brain damage. This evidence suggests that AMPA receptor antagonists could have broad utility in epileps...

2003
LU CHEN ALAA EL-HUSSEINI SUSUMU TOMITA DAVID S. BREDT ROGER A. NICOLL

Synaptic plasticity at excitatory synapses in the brain is largely achieved by rapid changes in the number of synaptic -amino3-hydroxyl-5-methyl-4-isoxazolepropionate (AMPA) receptors. Stargazin, a membrane protein that interacts with AMPA receptors, is believed to play a pivotal role in trafficking AMPA receptors to the plasma membrane and targeting them to the synapse. However, it is unclear ...

Journal: :Neuron 2009
Megumi Morimoto-Tomita Wei Zhang Christoph Straub Chang-Hoon Cho Kwang S. Kim James R. Howe Susumu Tomita

Neuronal AMPA receptors autoinactivate at high concentrations of glutamate, i.e., the current declines at glutamate concentrations above 10-100 microM. The mechanisms underlying this phenomenon are unclear. Stargazin-like TARPs are AMPA receptor auxiliary subunits that modulate receptor trafficking and channel properties. Here, we found that neuronal AMPA receptors and recombinant AMPA receptor...

Journal: :Neuron 2010
Akio Sumioka Dan Yan Susumu Tomita

Neurons use neurotransmitters to communicate across synapses, constructing neural circuits in the brain. AMPA-type glutamate receptors are the predominant excitatory neurotransmitter receptors mediating fast synaptic transmission. AMPA receptors localize at synapses by forming protein complexes with transmembrane AMPA receptor regulatory proteins (TARPs) and PSD-95-like membrane-associated guan...

Journal: :Brain research 2010
Yan Sun Xiao-Dong Jiang Xue Liu Hai-Qing Gong Pei-Ji Liang

Ca(2+)-permeable and Ca(2+)-impermeable AMPA receptors are co-expressed on carp retinal horizontal cells. In the present study, we examined the synaptic contribution and Zn(2+) modulatory effect of these two AMPA receptor subtypes using whole-cell patch clamp technique. Specific Ca(2+)-permeable AMPA receptor antagonist (1-naphthyl acetyl spermine, NAS) and selective Ca(2+)-impermeable AMPA rec...

Journal: :Epilepsy currents 2011
Michael A Rogawski

In the 1990s there was intense interest in ionotropic glutamate receptors as therapeutic targets for diverse neurological disorders, including epilepsy. NMDA receptors were thought to play a key role in the generation of seizures, leading to clinical studies of NMDA receptor blocking drugs in epilepsy. Disappointing results dampened enthusiasm for ionotropic glutamate receptors as a therapeutic...

Journal: :Science 2004
Mikyoung Park Esther C Penick Jeffrey G Edwards Julie A Kauer Michael D Ehlers

Long-term potentiation (LTP) of synaptic strength, the most established cellular model of information storage in the brain, is expressed by an increase in the number of postsynaptic AMPA receptors. However, the source of AMPA receptors mobilized during LTP is unknown. We report that AMPA receptors are transported from recycling endosomes to the plasma membrane for LTP. Stimuli that triggered LT...

Journal: :Developmental neurobiology 2007
Xianglian Ni Grace J Sullivan Miguel Martin-Caraballo

Ca2+ fluxes through ionotropic glutamate receptors regulate a variety of developmental processes, including neurite outgrowth and naturally occurring cell death. In the CNS, NMDA receptors were originally thought to be the sole source of Ca2+ influx through glutamate receptors; however, AMPA receptors also allow a significant influx of Ca2+ ions. The Ca2+ permeability of AMPA receptors is regul...

Journal: :The Journal of neuroscience : the official journal of the Society for Neuroscience 2007
Sabine Kott Markus Werner Christoph Körber Michael Hollmann

The family of AMPA receptors is encoded by four genes that are differentially spliced to result in the flip or flop versions of the four subunits GluR1 to GluR4. GluR2 is further modified at the so-called Q/R site by posttranscriptional RNA editing. Delivery of AMPA receptors to the plasma membrane and synaptic trafficking are controlled by transmembrane AMPA receptor regulatory proteins (TARPs...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید