نتایج جستجو برای: apache spark
تعداد نتایج: 18089 فیلتر نتایج به سال:
Due to the growing need to timely process and derive valuable information and knowledge from data produced in the Semantic Web, RDF stream processing (RSP) has emerged as an important research domain. In this paper, we describe the design of an RSP engine that is built upon state of the art Big Data frameworks, namely Apache Kafka and Apache Spark. Together, they support the implementation of a...
Scientific analyses commonly compose multiple single-process programs into a dataflow. An end-to-end dataflow of single-process programs is known as a many-task application. Typically, HPC tools are used to parallelize these analyses. In this work, we investigate an alternate approach that uses Apache Spark—a modern platform for data intensive computing—to parallelize many-task applications. We...
The Apache Spark stack has enabled fast large-scale data processing. Despite a rich library of statistical models and inference algorithms, it does not give domain users the ability to develop their own models. The emergence of probabilistic programming languages has showed the promise of developing sophisticated probabilistic models in a succinct and programmatic way. These frameworks have the...
Today, big and small organizations alike collect huge amounts of data, and they do so with one goal in mind: extract "value" through sophisticated exploratory analysis, and use it as the basis to make decisions as varied as personalized treatment and ad targeting. To address this challenge, we have developed Berkeley Data Analytics Stack (BDAS), an open source data analytics stack for big data ...
This paper is about a new framework called DeduPlication (DduP). DduP aims to solve large scale deduplication problems on arbitrary data tuples. DduP tries to bridge the gap between big data, high performance and duplicate detection. At the moment a first prototype exists but the overall project status is work in progress. DduP utilises the promising successor of Apache Hadoop MapReduce [Had14]...
BACKGROUND Structure-based virtual screening is an in-silico method to screen a target receptor against a virtual molecular library. Applying docking-based screening to large molecular libraries can be computationally expensive, however it constitutes a trivially parallelizable task. Most of the available parallel implementations are based on message passing interface, relying on low failure ra...
HypTrails is a bayesian approach for comparing different hypotheses about human trails on the web. While a standard implementation exists, it exposes performance issues when working with large-scale data. In this paper, we propose a distributed implementation of HypTrails based on Apache Spark taking advantage of several structural properties inherent to HypTrails. The performance improves subs...
Near real time Big Data from social network sites like Twitter or Facebook has been an interesting source for analytics by researchers in recent years owing to various factors including its up-to-date-ness, availability and popularity, though there may be a compromise in genuineness or accuracy. Apache Spark, the trendy big data processing engine that offers faster solutions compared to Hadoop,...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید