نتایج جستجو برای: b spline collocation

تعداد نتایج: 912949  

2013
A. Murat Aksoy Dursun Irk Idris Dağ

Taylor B-spline collocation method (TCM) is proposed to obtain the numerical solution of the nonlinear Schrödinger(NLS) equation with appropriate initial and boundary conditions. Time discretization is carried out with Taylor series expansion and resulting system of equation is fully-integrated using cubic B-spline collocation method. Test problems concerning single soliton motion, interaction ...

2015
Yousef Edrisi Tabriz Aghileh Heydari A. HEYDARI

In this paper we introduce a numerical approach that solves optimal control problems (OCPs) using collocation methods. This approach is based upon B-spline functions. The derivative matrices between any two families of B-spline functions are utilized to reduce the solution of OCPs to the solution of nonlinear optimization problems. Numerical experiments confirm our theoretical findings.

2016
Rajashekhar Reddy

A Recursive form cubic B-spline basis function is used as basis in B-spline collocation method to solve second linear singularly perturbed two point boundary value problem. The performance of the method is tested by considering the numerical examples with different boundary conditions. Results of numerical examples show the robustness of the method when compared with the analytical solution.

Jalil Rashidinia Shokofeh Sharifi

In this work the collocation method based on quartic B-spline is developed and applied to two-point boundary value problem in ordinary diferential equations. The error analysis and convergence of presented method is discussed. The method illustrated by two test examples which verify that the presented method is applicable and considerable accurate.

F. Esfahani J. Rashidinia S. Jamalzadeh

We develope a numerical method based on B-spline collocation method to solve linear Klein-Gordon equation. The proposed scheme is unconditionally stable. The results of numerical experiments have been compared with the exact solution to show the efficiency of the method computationally. Easy and economical implementation is the strength of this approach.  

The spline collocation method  is employed to solve a system of linear and nonlinear Fredholm and Volterra integro-differential equations. The solutions are collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula. We obtain the unique solution for linear and nonlinear system $(nN+3n)times(nN+3n)$ of integro-differential equations. This approximation reduces th...

As we know the approximation solution of seventh order two points boundary value problems based on B-spline of degree eight has only ${cal O}(h^{2})$ accuracy and this approximation is non-optimal. In this work, we obtain an optimal spline collocation method for solving the general nonlinear seventh order two points boundary value problems. The ${cal O}(h^{8})$ convergence analysis, mainly base...

2007
Philipp Lamby Karl-Heinz Brakhage

We revisit the lassi al te hnique of ellipti grid generation with harmoni mappings. For the determination of the ontrol fun tions we use the framework developed by Spekreijse [1℄. However, instead with nite di eren es we dis retize the underlying partial di erential equation with a B-spline ollo ation method in order to work dire tly with the native data representations of our CAGD system. This...

In this paper, we use a numerical method involving collocation method with third B-splines as basis functions for solving a class of singular initial value problems (IVPs) of Lane--Emden type equation. The original differential equation is modified at the point of singularity. The modified problem is then treated by using B-spline approximation. In the case of non-linear problems, we first line...

Journal: :journal of mathematical modeling 2016
nehzat ebrahimi jalil rashidinia

the spline collocation method  is employed to solve a system of linear and nonlinear fredholm and volterra integro-differential equations. the solutions are collocated by cubic b-spline and the integrand is approximated by the newton-cotes formula. we obtain the unique solution for linear and nonlinear system $(nn+3n)times(nn+3n)$ of integro-differential equations. this approximation reduces th...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید