1.1. Definitions Throughout this paper, λ denotes the Lebesgue measure on C and ωo = dd|z| the Euclidean Kähler form in C, where d = √ −1 4 (∂̄ − ∂). Let φ ∈ C (C) be a function, μ a measure in C, and p ∈ [1,∞). One can define the spaces Lp(e−pφdμ) and F (μ, φ) := Lp(e−pφdμ) ∩ O(C). If the measure μ is Lebesgue measure, we simply write F (λ, φ) =: F (φ). Similarly one can define L∞(e−φ, μ) = {f ...