نتایج جستجو برای: bimetallic electrocatalyst for oxygen reduction
تعداد نتایج: 10560376 فیلتر نتایج به سال:
In this work, electrocatalyst with core-shell structure (Pd as core and Pt as shell on VulcanXC-72R) was synthesis. Not only this structure can reduce the amount of platinum but it also can increase the gas diffusion electrode (GDE) performance in cathode reaction (Oxygen Reduction Reaction or ORR) of polymer electrolyte membrane fuel cell (PEMFC). To this meaning, one series of electrocatalyst...
Hexagonal Ag/Pt nanoshells were prepared by using a hexagonal Ag nanoplate as the displacement template and by introducing Pt ions. The prepared Ag/Pt nanoshells played the role of an electrocatalyst in an oxygen reduction process. Compared to spherical Pt and Ag/Pt nanoparticles, the hexagonal Ag/Pt nanoshells showed higher activity for oxygen electroreduction.
A non-precious metal electrocatalyst has been developed for the oxygen reduction reaction based on nanoporous molybdenum carbide (nano-Mo2C) wires through a facile calcination of sub-nanometer periodic organic-inorganic hybrid nanowires. The highly dispersed Mo2C wires were composed of 10-15 nm nanocrystals with a mesopore size of 3.3 nm. The properties of nano-Mo2C wires were characterized usi...
The metal complex [(tpy)(Mebim-py)Ru(II)(S)](2+) (tpy = 2,2' : 6',2''-terpyridine; Mebim-py = 3-methyl-1-pyridylbenzimidazol-2-ylidene; S = solvent) is a robust, reactive electrocatalyst toward both water oxidation to oxygen and carbon dioxide reduction to carbon monoxide. Here we describe its use as a single electrocatalyst for CO(2) splitting, CO(2) → CO + 1/2 O(2), in a two-compartment elect...
The oxygen reduction reaction (ORR) is paid much more attention because of the high overpotential required for driving four-electron process in field storage and sustainable energy conversion, including fuel cell applications. In this paper, PtCo nanoparticles encapsulated on carbon supports were prepared by a simple modified polyol method with ethylene glycol. Structural as well electrochemica...
Development of efficient, affordable electrocatalysts for the oxygen evolution reaction and the oxygen reduction reaction is critical for rechargeable metal-air batteries. Here we present lithium cobalt oxide, synthesized at 400 °C (designated as LT-LiCoO2) that adopts a lithiated spinel structure, as an inexpensive, efficient electrocatalyst for the oxygen evolution reaction. The catalytic act...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید