نتایج جستجو برای: biquaternions complexified quaternions

تعداد نتایج: 1708  

Journal: :Linear Algebra and its Applications 1997

2008
Stefan Rönn

This treatise investigates holomorphic functions defined on the space of bicomplex numbers introduced by Segre. The theory of these functions is associated with Fueter’s theory of regular, quaternionic functions. The algebras of quaternions and bicomplex numbers are developed by making use of so-called complex pairs. Special attention is paid to singular bicomplex numbers that lack an inverse. ...

2012
Ben Kenwright

In this paper, we give a beginners guide to the practicality of using dual-quaternions to represent the rotations and translations in character-based hierarchies. Quaternions have proven themselves in many fields of science and computing as providing an unambiguous, un-cumbersome, computationally efficient method of representing rotational information. We hope after reading this paper the reade...

Journal: :IEEE Transactions on Signal Processing 2008

2010
MICHAEL CREUTZ

1. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." The Fibonacci Quarterly 3 (1965):161-75. 2. A. F. Horadam. "Complex Fibonacci Numbers and Fibonacci Quaternions." Amer. Math. Monthly 70 (1963):289-91. 3. A. L. Iakin. "Generalized Quaternions with Quaternion Components." The Fibonacci Quarterly 15 (1977):35Q-52. 4. A. L. Iakin. "Generalized Quaternions of Higher...

Journal: :Science 1896

Journal: :Communications in Mathematical Physics 2001

Journal: :Discussiones Mathematicae - General Algebra and Applications 2021

The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...

2012
Valery I. Sbitnev

All material objects perceivable by our sensations move in real 3D-space. In order to describe such movement in strict mathematical forms we need to realize, first, what does the space represent as a mathematical abstraction and how motion in it can be expressed? Isaac Newton had gave many cogitations with regard to categories of the space and time. Results of these cogitations have been devote...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید