نتایج جستجو برای: bulk heterojunction
تعداد نتایج: 82884 فیلتر نتایج به سال:
Broadening the absorption bandwidth of polymer solar cells by incorporating multiple absorber donors into the bulk-heterojunction active layer is an attractive means of resolving the narrow absorption of organic semiconductors. However, this leads to a much more complicated system, and previous efforts have met with only limited success. Here, several dual-donor and multi-donor bulk-heterojunct...
Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear ...
While the performance of polymer−polymer bulk heterojunction organic photovoltaics (OPVs) is poor compared with polymer−fullerene OPVs, reducing or eliminating micrometer-scale phase separation in all-polymer OPVs may dramatically improve performance. Herein, we demonstrate that 2-ureido-4[1H]-pyrimidinone (UPy) quadruple hydrogen bonding interactions can be used to prevent micrometer-scale pha...
Dr. D. A. R. Barkhouse , Dr. R. Debnath , I. J. Kramer , D. Zhitomirsky , Dr. A. G. Pattantyus-Abraham , Dr. L. Levina , Prof. E. H. Sargent Department of Electrical and Computer Engineering University of Toronto 10 King’s College Road, Toronto, Ontario M5S 3G4, Canada E-mail: [email protected] Dr. D. A. R. Barkhouse IBM Thomas J. Watson Research Center Kitchawan Road, Yorktown Heights, N...
Related Articles High efficiency and high photo-stability zinc-phthalocyanine based planar heterojunction solar cells with a double interfacial layer Appl. Phys. Lett. 101, 113301 (2012) High efficiency and high photo-stability zinc-phthalocyanine based planar heterojunction solar cells with a double interfacial layer APL: Org. Electron. Photonics 5, 207 (2012) Theory and simulation of organic ...
Optimizing the morphology of bulk heterojunctions is known to significantly improve the photovoltaic performance of organic solar cells, but available quantitative imaging techniques are few and have severe limitations. We demonstrate X-ray ptychographic coherent diffractive imaging applied to all-organic blends. Specifically, the phase-separated morphology in bulk heterojunction photoactive la...
A key parameter to improve the performance of organic solar cells is the optimization of electronic phenomena at donor–acceptor interfaces through the optimization of the morphology of the bulk heterojunction. The correlative mapping of morphological, electrical and mechanical properties at the nanoscale by advanced scanning probe microscopy techniques allows for a detailed characterization of ...
A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared ...
This is an in depth study on the surface potential changes of P3HT/TiO(2) nanorod bulk heterojunction thin films. They are affected by interlayer structures, the molecular weight of P3HT, the processing solvents and the surface ligands on the TiO(2). The addition of an electron blocking layer and/or the hole blocking layer to the P3HT/TiO(2) thin film can facilitate charge carrier transport and...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید