نتایج جستجو برای: cdk

تعداد نتایج: 3845  

Journal: :Development 2013
Elizabeth Anne Bowman Christopher Ray Bowman Jeong H Ahn William G Kelly

RNA polymerase II (Pol II) elongation in metazoans is thought to require phosphorylation of serine 2 (Ser2-P) of the Pol II C-terminal domain (CTD) by the P-TEFb complex, CDK-9/cyclin T. Another Ser2 kinase complex, CDK-12/cyclin K, which requires upstream CDK-9 activity has been identified in Drosophila and human cells. We show that regulation of Ser2-P in C. elegans soma is similar to other m...

Journal: :Biochemical Society transactions 2013
Jane A Endicott Martin E M Noble

Structural studies of members of the CDK (cyclin-dependent protein kinase) family have made a significant contribution to our understanding of the regulation of protein kinases. The structure of monomeric unphosphorylated CDK2 was the first of an inactive protein kinase to be determined and, since then, structures of other members of the CDK family, alone, in complex with regulatory proteins an...

Journal: :Cell 2011
Céline Bouchoux Frank Uhlmann

After sister chromatid splitting at anaphase onset, exit from mitosis comprises an ordered series of events. Dephosphorylation of numerous mitotic substrates, which were phosphorylated by cyclin-dependent kinase (Cdk), is thought to bring about mitotic exit, but how temporal ordering of mitotic exit events is achieved is poorly understood. Here, we show, using budding yeast, that dephosphorylat...

2010
Karl A Merrick Robert P Fisher

The cell division cycle can be modelled as a series of quantitative thresholds of cyclin-dependent kinase (CDK) activity. DNA synthesis has a lower threshold requirement for CDK than does entry into mitosis, and mitotic exit and re-setting of replication origins occur upon collapse of CDK activity below both thresholds, so that the simple rise and fall of CDK with each cell cycle might suffice ...

2009
Tomohiro Eguchi Hiraku Itadani Toshiyasu Shimomura Nobuhiko Kawanishi Hiroshi Hirai Hidehito Kotani

Because cyclin-dependent kinases (CDK) play a pivotal role in cancer progression, the development of CDK inhibitors has attracted attention in antitumor therapy. However, despite significant preclinical and clinical developments, CDK inhibition biomarkers for predicting efficacy against certain cancers in individual patients have not been identified. Here, we characterized a macrocyclic quinoxa...

2015
Shumei Kato Maria Schwaederle Gregory A Daniels David Piccioni Santosh Kesari Lyudmila Bazhenova Kelly Shimabukuro Barbara A Parker Paul Fanta Razelle Kurzrock

Aberrations in the cyclin-dependent kinase (CDK) pathways that regulate the cell cycle restriction point contribute to genomic instability and tumor proliferation, and can be targeted by recently developed CDK inhibitors. We therefore investigated the clinical correlates of CDK4/6 and CDKN2A/B abnormalities in diverse malignancies. Patients with various cancers who underwent molecular profiling...

Journal: :Molecular cancer therapeutics 2009
Tomohiro Eguchi Hiraku Itadani Toshiyasu Shimomura Nobuhiko Kawanishi Hiroshi Hirai Hidehito Kotani

Because cyclin-dependent kinases (CDK) play a pivotal role in cancer progression, the development of CDK inhibitors has attracted attention in antitumor therapy. However, despite significant preclinical and clinical developments, CDK inhibition biomarkers for predicting efficacy against certain cancers in individual patients have not been identified. Here, we characterized a macrocyclic quinoxa...

Journal: :Cell 2010
Ying Lu Frederick R. Cross

One oscillation of Cyclin-dependent kinase (Cdk) activity, largely driven by periodic synthesis and destruction of cyclins, is tightly coupled to a single complete eukaryotic cell division cycle. Tight linkage of different steps in diverse cell-cycle processes to Cdk activity has been proposed to explain this coupling. Here, we demonstrate an intrinsically oscillatory module controlling nucleol...

Journal: :Molecular cell 2004
Vincent Archambault Emmanuel J Chang Benjamin J Drapkin Frederick R Cross Brian T Chait Michael P Rout

The cell division cycle of the yeast S. cerevisiae is driven by one Cdk (cyclin-dependent kinase), which becomes active when bound to one of nine cyclin subunits. Elucidation of Cdk substrates and other Cdk-associated proteins is essential for a full understanding of the cell cycle. Here, we report the results of a targeted proteomics study using affinity purification coupled to mass spectromet...

2017
Molly Godfrey Sandra A. Touati Meghna Kataria Andrew Jones Ambrosius P. Snijders Frank Uhlmann

In the quantitative model of cell-cycle control, progression from G1 through S phase and into mitosis is ordered by thresholds of increasing cyclin-dependent kinase (Cdk) activity. How such thresholds are read out by substrates that respond with the correct phosphorylation timing is not known. Here, using the budding yeast model, we show that the abundant PP2ACdc55 phosphatase counteracts Cdk p...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید