نتایج جستجو برای: chebyshev acceleration technique
تعداد نتایج: 658725 فیلتر نتایج به سال:
in this study, the problem of determining an optimal trajectory of a nonlinear injection into orbit problem with minimum time was investigated. the method was based on orthogonal polynomial approximation. this method consists of reducing the optimal control problem to a system of algebraic equations by expanding the state and control vector as chebyshev or legendre polynomials with undetermined...
The aim of this paper is to improve the convergence rate of frame algorithm based on Richardson iteration and Chebyshev methods. Based on Richardson iteration method, we first square the existing convergence rate of frame algorithm which in turn the number of iterations would be bisected and increased speed of convergence is achieved. Afterward, by using Chebyshev polynomials, we improve this s...
Abstract Iterative reverse filters have been recently developed to address the problem of removing effects a black box image filter. Because numerous iterations are usually required achieve desired result, processing speed is slow. In this paper, we propose use fixed-point acceleration techniques tackle problem. We present an interpretation existing as and discuss their relationship with gradie...
The 1669-1670 Newton-Raphson’s method is still used to solve equations systems and unconstrained optimization problems. Since this method, some other algorithms inspired by Newton’s have been proposed: in 1839 Chebyshev developped a high order cubical convergence algorithm, and in 1967 Shamanskii proposed an acceleration of Newton’s method. By considering a Newton-type methods as displacement d...
In this manuscript, a numerical technique is presented for finding the eigenvalues of the regular Sturm-Liouville problems. The Chebyshev cardinal functions are used to approximate the eigenvalues of a regular Sturm-Liouville problem with Dirichlet boundary conditions. These functions defined by the Chebyshev function of the first kind. By using the operational matrix of derivative the problem ...
The classical column generation approach often shows a very slow convergence. Many different acceleration techniques have beenproposed recently to improve the convergence. Here, we briefly survey these methods and propose a novel algorithm based on the Chebyshev center of the dual polyhedron. The Chebyshev center can be obtained by solving a linear program; consequently, the proposed method can...
In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...
It is commonly accepted that fractional differential equations play an important role in the explanation of many physical phenomena. For this reason we need a reliable and efficient technique for the solution of fractional differential equations. This paper deals with the numerical solution of a class of fractional differential equation. The fractional derivatives are described...
ECG (Electrocardiogram) signals originating from heart muscles, generate massive volume of digital data. They need to be compressed or approximated for efficient transmission and storage. ECG signal compression is traditionally performed in three ways: direct, transform and parameter extraction. Polynomial approximation which is a form of parameter extraction method, is employed here. This pape...
in this paper, we propose the chebyshev wavelet approximation for the numerical solution of a class of integro-differential equation which describes the charged particle motion for certain configurations of oscillating magnetic fields. we show that the chebyshev approximation transform an integral equation to an explicit system of linear algebraic equations. illustrative examples are included t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید