نتایج جستجو برای: chebyshev and legendre polynomials

تعداد نتایج: 16838698  

In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...

Journal: :Hardy-Ramanujan Journal 2022

Motivated by an expression Persson and Strang on integral involving Legendre polynomials, stating that the square of $P_{2n+1}(x)/x$ integrated over $[-1,1]$ is always $2$, we present analog results for Hermite, Chebyshev, Laguerre Gegenbauer polynomials as well original polynomial with even index.

Journal: :Journal of Scientific Computing 2021

In this paper an accurate method to construct the bidiagonal factorization of collocation and Wronskian matrices Jacobi polynomials is obtained used compute with high relative accuracy their eigenvalues, singular values inverses. The particular cases Legendre polynomials, Gegenbauer Chebyshev first second kind rational are considered. Numerical examples included.

Journal: :sahand communications in mathematical analysis 0
somayeh nemati department of mathematics, faculty of mathematical sciences, university of mazandaran, babolsar, iran.

in this paper, we consider the second-kind chebyshev polynomials (skcps) for the numerical solution of the fractional optimal control problems (focps). firstly, an introduction of the fractional calculus and properties of the shifted skcps are given and then operational matrix of fractional integration is introduced. next, these properties are used together with the legendre-gauss quadrature fo...

Journal: :Journal of Approximation Theory 2015
G. Migliorati

We present novel Markov-type and Nikolskii-type inequalities for multivariate polynomials associated with arbitrary downward closed multi-index sets in any dimension. Moreover, we show how the constant of these inequalities changes, when the polynomial is expanded in series of tensorized Legendre or Chebyshev or Gegenbauer or Jacobi orthogonal polynomials indexed by a downward closed multi-inde...

2014
Rigoberto Flórez Antara Mukherjee

The Hosoya polynomial triangle is a triangular arrangement of polynomials where each entry is a product of two polynomials. The geometry of this triangle is a good 1 tool to study the algebraic properties of polynomial products. In particular, we find closed formulas for the alternating sum of products of polynomials such as Fibonacci polynomials, Chebyshev polynomials, Morgan-Voyce polynomials...

2004
Sarat Saharia Prabin Kumar Bora Dilip K. Saikia

Moment functions are widely used in image analysis as feature descriptors. Compared to geometric moments, orthogonal moments have become more popular in image analysis for their better representation capabilities. In comparison to continuous orthogonal moments discrete orthogonal moments provide a more accurate description of the image features. This paper compares the performance of discrete o...

Journal: :Pattern Recognition 2012
Hongqing Zhu

This paper addresses bivariate orthogonal polynomials, which are a tensor product of two different orthogonal polynomials in one variable. These bivariate orthogonal polynomials are used to define several new types of continuous and discrete orthogonal moments. Some elementary properties of the proposed continuous Chebyshev–Gegenbauer moments (CGM), Gegenbauer–Legendre moments (GLM), and Chebys...

1994
V. V. Dodonov I. M. Dremin P. G. Polynkin V. I. Man ’ ko Lebedev

The cumulants and factorial moments of photon distribution for squeezed and correlated light are calculated in terms of Chebyshev, Legendre and Laguerre polynomials. The phenomenon of strong oscillations of the ratio of the cumulant to factorial moment is found. Running title: Oscillations of cumulants in squeezed states.

2007
Mohit Gupta Srinivasa G. Narasimhan

In this report, we present two mathematical results which can be useful in a variety of settings. First, we present an analysis of Legendre polynomials triple product integral. Such integrals arise whenever two functions are multiplied, with both the operands and the result represented in the Legendre polynomial basis. We derive a recurrence relation to calculate these integrals analytically. W...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید