نتایج جستجو برای: classification trees
تعداد نتایج: 573723 فیلتر نتایج به سال:
Comparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images
Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...
introduction the increasing use of satellite remote sensing data for civilian use has proved to be the most cost-effective means of mapping and monitoring for environmental changes. satellite remote sensing has played a pivotal role in finding forest cover, vegetation type and land use changes in urban areas. one of the most complete of these methods is classification. the conventional per-pixe...
Various statistical classification methods, including discriminant analysis, logistic regression, and cluster analysis, have been used with antibiotic resistance analysis (ARA) data to construct models for bacterial source tracking (BST). We applied the statistical method known as classification trees to build a model for BST for the Anacostia Watershed in Maryland. Classification trees have mo...
conclusions by comparing the results of classification using multiple classifier fusion with respect to using each classifier separately, it is found that the classifier fusion is more effective in enhancing the detection accuracy. objectives through the improvement of classification accuracy rate, this work aims to present a computer-assisted diagnosis system for malaria parasite. materials an...
Data mining term is mainly used for the specific set of six activities namely Classification, Estimation, Prediction, Affinity grouping or Association rules, Clustering, Description and Visualization. The first three tasks classification, estimation and prediction are all examples of directed data mining or supervised learning. Decision Tree (DT) is one of the most popular choices for learning ...
We propose a new algorithm for learning isotonic classification trees. It relabels non-monotone leaf nodes by performing the isotonic regression on the collection of leaf nodes. In case two leaf nodes with a common parent have the same class after relabeling, the tree is pruned in the parent node. Since we consider problems with ordered class labels, all results are evaluated on the basis of L1...
Algorithms for learning cIassification trees have had successes in artificial intelligence and statistics over many years. This paper outlines how a tree learning algorithm can be derived using Bayesian statistics. This iutroduces Bayesian techniques for splitting, smoothing, and tree averaging. The splitting rule is similar to QuinIan’s information gain, while smoothing and averaging replace p...
Bellows TS and Fisher TW (eds.) (1999) Handbook of Biological Control: Principles and Applications of Biological Control. San Diego: Academic Press. Clausen CP (ed.) (1978) Agricultural Research Service: Handbook No. 480: Introduced Parasites and Predators of Arthropod Pests and Weeds: A World Review. Washington, DC: USDA: Agricultural Research Service. DeBach P and Rosen D (1991) Biological Co...
Classification and regression trees are machine-learning methods for constructing prediction models from data. The models are obtained by recursively partitioning the data space and fitting a simple prediction model within each partition. As a result, the partitioning can be represented graphically as a decision tree. Classification trees are designed for dependent variables that take a finite ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید