نتایج جستجو برای: cohen macaulay type
تعداد نتایج: 1351039 فیلتر نتایج به سال:
we introduce a generalization of the notion of depth of an ideal on a module by applying the concept of local cohomology modules with respect to a pair of ideals. we also introduce the concept of $(i,j)$-cohen--macaulay modules as a generalization of concept of cohen--macaulay modules. these kind of modules are different from cohen--macaulay modules, as an example shows. also an art...
In this paper we study Cohen-Macaulay local rings of dimension d, multiplicity e and second Hilbert coefficient e2 in the case e2=e1−e+1. Let h=μ(m)−d. If e2≠0 then our can prove that type(A)≥e−h−1. type(A)=e−h−1 show associated graded ring G(A) is Cohen-Macaulay. next when type(A)=e−h determine all possible series A. depthG(A) completely determines Series
This paper determines when the Krull-Schmidt property holds for all finitely generated modules and for maximal Cohen-Macaulay modules over one-dimensional local rings with finite Cohen-Macaulay type. We classify all maximal CohenMacaulay modules over these rings, beginning with the complete rings where the Krull-Schmidt property is known to hold. We are then able to determine when the Krull-Sch...
in this paper, we introduce a subclass of chordal graphs which contains $d$-trees and show that their complement are vertex decomposable and so is shellable and sequentially cohen-macaulay.
Let G be a simple undirected graph on n vertices, and let I(G) ⊆ R = k[x 1 ,. .. , x n ] denote its associated edge ideal. We show that all chordal graphs G are sequentially Cohen-Macaulay; our proof depends upon showing that the Alexander dual of I(G) is componentwise linear. Our result complements Faridi's theorem that the facet ideal of a simplicial tree is sequentially Cohen-Macaulay and im...
In this paper, we characterize the shellable complete $t$-partite graphs. We also show for these types of graphs the concepts vertex decomposable, shellable and sequentially Cohen-Macaulay are equivalent. Furthermore, we give a combinatorial condition for the Cohen-Macaulay complete $t$-partite graphs.
In this paper we use "ring changed'' Gorenstein homologicaldimensions to define Cohen-Macaulay injective, projective and flatdimensions. For doing this we use the amalgamated duplication of thebase ring with semi-dualizing ideals. Among other results, we prove that finiteness of these new dimensions characterizes Cohen-Macaulay rings with dualizing ideals.
We characterize unmixed and Cohen-Macaulay edge-weighted edge ideals of very well-covered graphs. also provide examples oriented graphs that have non-Cohen-Macaulay vertex-weighted ideals, while the ideal their underlying graph is Cohen-Macaulay. This disproves a conjecture posed by Pitones, Reyes, Toledo.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید