نتایج جستجو برای: cohomology algebra
تعداد نتایج: 79279 فیلتر نتایج به سال:
In this paper we are interested in Hochschild cohomology of finite-dimensional algebras; the main motivation is to generalize group cohomology to larger classes of algebras. If suitable finite generation holds, one can define support varieties of modules as introduced by [SS]. Furthermore, when the algebra is self-injective, many of the properties of group representations generalize to this set...
We introduce an equivariant version of cyclic cohomology for Hopf module algebras. For any H-module algebra A, where H is a Hopf algebra with S2 = idH we define the cocyclic module C ♮ H(A) and we find its relation with cyclic cohomology of crossed product algebra A ⋊ H. We define K 0 (A), the equivariant K-theory group of A, and its pairing with cyclic and periodic cyclic cohomology of C H(A).
Abstract. We define a BV-structure on the Hochschild-cohomology of a unital, associative algebra A with a symmetric, invariant and non-degenerate inner product. The induced Gerstenhaber algebra is the one described in Gerstenhaber’s original paper on Hochschild-cohomology. We also prove the corresponding theorem in the homotopy case, namely we define the BV-structure on the Hochschild-cohomolog...
We relate the cohomology of the Orlik-Solomon algebra of a discriminantal arrangement to the local system cohomology of the complement. The Orlik-Solomon algebra of such an arrangement (viewed as a complex) is shown to be a linear approximation of a complex arising from the fundamental group of the complement, the cohomology of which is isomorphic to that of the complement with coefficients in ...
The integer cohomology algebra of the complement of a complex subspace arrangement with geometric intersection lattice is completely determined by the combinatorial data of the arrangement. We give a combinatorial presentation of the cohomology algebra in the spirit of the Orlik-Solomon result on the cohomology algebras of complex hyperplane arrangements. Our methods are elementary: we work wit...
This article presents a study of an algebra spanned by the faces of a hyperplane arrangement. The quiver with relations of the algebra is computed and the algebra is shown to be a Koszul algebra. It is shown that the algebra depends only on the intersection lattice of the hyperplane arrangement. A complete systemof primitive orthogonal idempotents for the algebra is constructed and other algebr...
It is common knowledge that the construction of one-parameter deformations of various algebraic structures, like associative algebras or Lie algebras, involves certain conditions on cohomology classes, and that these conditions are usually expressed in terms of Massey products, or rather Massey powers. The cohomology classes considered are those of certain differential graded Lie algebras (DGLA...
Gelfand, Retakh, Serconek and Wilson, in [3], defined a graded algebra AΓ attached to any finite ranked poset Γ a generalization of the universal algebra of pseudo-roots of noncommutative polynomials. This algebra has since come to be known as the splitting algebra of Γ. The splitting algebra has a secondary filtration related to the rank function on the poset and the associated graded algebra ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید