نتایج جستجو برای: commutativity
تعداد نتایج: 1948 فیلتر نتایج به سال:
It is shown that all the assumptions for symmetric monoidal categories flow out of a unifying principle involving natural isomorphisms of the type (A ∧B) ∧ (C ∧D) → (A ∧ C) ∧ (B ∧D), called medial commutativity. Medial commutativity in the presence of the unit object enables us to define associativity and commutativity natural isomorphisms. In particular, Mac Lane’s pentagonal and hexagonal coh...
It is shown that all the assumptions for symmetric monoidal categories flow out of a unifying principle involving natural isomorphisms of the type (A ∧B) ∧ (C ∧D) → (A ∧ C) ∧ (B ∧D), called medial commutativity. Medial commutativity in the presence of the unit object enables us to define associativity and commutativity natural isomorphisms. In particular, Mac Lane’s pentagonal and hexagonal coh...
It is shown that coherence conditions for monoidal categories concerning associativity are analogous to coherence conditions for symmetric strictly monoidal categories, where associativity arrows are identities. Mac Lane’s pentagonal coherence condition for associativity is decomposed into conditions concerning commutativity, among which we have a condition analogous to naturality and a degener...
It is shown that coherence conditions for monoidal categories concerning associativity are analogous to coherence conditions for symmetric or braided strictly monoidal categories, where associativity arrows are identities. Mac Lane’s pentagonal coherence condition for associativity is decomposed into conditions concerning commutativity, among which we have a condition analogous to naturality an...
It is shown that coherence conditions for monoidal categories concerning associativity are analogous to coherence conditions for symmetric or braided strictly monoidal categories, where associativity arrows are identities. Mac Lane’s pentagonal coherence condition for associativity is decomposed into conditions concerning commutativity, among which we have a condition analogous to naturality an...
It is shown that coherence conditions for monoidal categories concerning associativity are analogous to coherence conditions for symmetric strictly monoidal categories, where associativity arrows are identities. Mac Lane’s pentagonal coherence condition for associativity is decomposed into conditions concerning commutativity, among which we have a condition analogous to naturality and a degener...
Reasoning about commutativity between data-structure operations is an important problem with applications including parallelizing compilers, optimistic parallelization and, more recently, Ethereum smart contracts. There have been research results on automatic generation of commutativity conditions, yet we are unaware of any fully automated technique to generate conditions that are both sound an...
for a nite group g the commutativity degree denote by d(g) and dend: d(g) = jf(x; y)jx; y 2 g; xy = yxgj jgj2 : in [2] authors found commutativity degree for some groups,in this paper we nd commuta- tivity degree for a class of groups that have high nilpontencies.
One of unsolved problems in quantum measurement theory is to characterize coexistence of quantum effects. In this paper, applying positive operator matrix theory, we give a mathematical characterization of the witness set of coexistence of quantum effects and obtain a series of properties of coexistence. We also devote to characterizing bijective morphisms on quantum effects leaving the witness...
It is shown that coherence conditions for monoidal categories concerning associativity are analogous to coherence conditions for symmetric or braided strictly monoidal categories, where associativity arrows are identities. Mac Lane’s pentagonal coherence condition for associativity is decomposed into conditions concerning commutativity, among which we have a condition analogous to naturality an...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید