نتایج جستجو برای: comonad

تعداد نتایج: 143  

2009
GABRIELLA BÖHM

A weak entwining structure in a 2-category K consists of a monad t and a comonad c, together with a 2-cell relating both structures in a way that generalizes a mixed distributive law. A weak entwining structure can be characterized as a compatible pair of a monad and a comonad, in 2-categories generalizing the 2-category of comonads and the 2-category of monads in K , respectively. This observa...

Journal: :Electr. Notes Theor. Comput. Sci. 2004
John Power Olha Shkaravska

We investigate the notion of a comodel of a (countable) Lawvere theory, an evident dual to the notion of model. By taking the forgetful functor from the category of comodels to Set, every (countable) Lawvere theory generates a comonad on Set. But while Lawvere theories are equivalent to finitary monads on Set, and that result extends to higher cardinality, no such result holds for comonads, and...

Journal: :Logical Methods in Computer Science 2012
Danel Ahman James Chapman Tarmo Uustalu

Abbott, Altenkirch, Ghani and others have taught us that many parameterized datatypes (set functors) can be usefully analyzed via container representations in terms of a set of shapes and a set of positions in each shape. This paper builds on the observation that datatypes often carry additional structure that containers alone do not account for. We introduce directed containers to capture the ...

2008
Peter Selinger Benoît Valiron

We give a categorical semantics for a call-by-value linear lambda calculus. Such a lambda calculus was used by Selinger and Valiron as the backbone of a functional programming language for quantum computation. One feature of this lambda calculus is its linear type system, which includes a duplicability operator “!” as in linear logic. Another main feature is its call-by-value reduction strategy...

2010
TARMO UUSTALU

Within the setting of the categorical approach to total functional programming, we introduce a \many-in-one" recursion scheme that neatly uniies a variety of seemingly diverging strengthenings of the basic recursion scheme of iteration. The new scheme is doubly generic: in addition to being parametric in a functor capturing the signature of an inductive type, it is also parametric in a comonad ...

2005
Ranald Clouston Robert Goldblatt

Coalgebras provide effective models of data structures and state-transition systems. A virtual covariety is a class of coalgebras closed under coproducts, images of coalgebraic morphisms, and subcoalgebras defined by split equalisers. A covariety has the stronger property of closure under all subcoalgebras, and is behavioural if it is closed under domains of morphisms, or equivalently under ima...

2016
Abraham Westerbaan

Furber and Jacobs have shown in their study of quantum computation that the category of commutative C∗-algebras and PU-maps (positive linear maps which preserve the unit) is isomorphic to the Kleisli category of a comonad on the category of commutative C∗-algebras with MIU-maps (linear maps which preserve multiplication, involution and unit). [3] In this paper, we prove a non-commutative varian...

2013
Bart Jacobs Institute for Computing Information Sciences Radboud University Nijm

The free algebra adjunction, between the category of algebras of a monad and the underlying category, induces a comonad on the category of algebras. The coalgebras of this comonad are the topic of study in this paper (following earlier work). It is illustrated how such coalgebras-on-algebras can be understood as bases, decomposing each element x into primitives elements from which x can be reco...

2014
JOHN BOURKE RICHARD GARNER

Algebraic weak factorisation systems (awfs) refine weak factorisation systems by requiring that the assignations sending a map to its first and second factors should underlie an interacting comonad–monad pair on the arrow category. We provide a comprehensive treatment of the basic theory of awfs—drawing on work of previous authors—and complete the theory with two main new results. The first pro...

2011
Bart Jacobs

The free algebra adjunction, between the category of algebras of a monad and the underlying category, induces a comonad on the category of algebras. The coalgebras of this comonad are the topic of study in this paper (following earlier work). It is illustrated how such coalgebras-on-algebras can be understood as bases, decomposing each element x into primitives elements from which x can be reco...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید