نتایج جستجو برای: conjugacy classes of non normal subgroups
تعداد نتایج: 21316813 فیلتر نتایج به سال:
Abstract In this paper, we study the number of conjugacy classes maximal cyclic subgroups a finite group
Valuations on a field K are encoded in the absolute Galois group GK of K: They are in one-to-one correspondence to the conjugacy classes of decomposition subgroups of GK which (apart from few exceptions) can be characterized in group theoretic terms. Roughly speaking decomposition subgroups of GK are maximal subgroups of GK with a Sylow-subgroup containing a non-trivial abelian normal subgroup....
What ingredients are necessary to describe all maximal subgroups of the general finite group G? This paper is concerned with providing such an analysis. A good first reduction is to take into account the first isomorphism theorem, which tells us that the maximal subgroups containing a given normal subgroup N of G correspond, under the natural projection, to the maximal subgroups of the quotient...
We describe a practical algorithm for computing representatives of the conjugacy classes of maximal subgroups in a finite group, together with details of its implementation for permutation groups in the MAGMA system. We also describe methods for computing complements of normal subgroups and minimal supplements of normal soluble subgroups of finite groups.
in this paper a first step in classifying the fuzzy normalsubgroups of a finite group is made. explicit formulas for thenumber of distinct fuzzy normal subgroups are obtained in theparticular cases of symmetric groups and dihedral groups.
Let G be a finite group with a non-abelian minimal normal subgroup N which is a direct product of the simple group X. The maximal subgroups of G which complement N and their conjugacy classes are parametrised in terms of certain homomorphisms taking values in AutX and satisfying particular conditions.
The lifting of results from factor groups to the full group is a standard technique for solvable groups. This paper shows how to utilize this approach in the case of non-solvable normal subgroups to compute the conjugacy classes of a finite group.
We compute conjugacy classes in maximal parabolic subgroups of the general linear group. This computation proceeds by reducing to a “matrix problem”. Such problems involve finding normal forms for matrices under a specified set of row and column operations. We solve the relevant matrix problem in small dimensional cases. This gives us all conjugacy classes in maximal parabolic subgroups over a ...
many results were proved on the structure of finite groups with some restrictions on their real elements and on their conjugacy classes. we generalize a few of these to some classes of infinite groups. we study groups in which real elements are central, groups in which real elements are $2$-elements, groups in which all non-trivial classes have the same finite size and $fc$-groups w...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید