نتایج جستجو برای: dense separable
تعداد نتایج: 79048 فیلتر نتایج به سال:
This probably doesn’t deserve a § all to itself, but it will be handy to know it in what follows. Recall that a set S in a metric (or topological) space X is dense-in-itself 1 if every neighborhood of each s0 ∈ S contains points s ∈ S different from s0. One says that S is perfect if it is closed and dense-in-itself. A topological (or metric) space is separable if it has a countable subset whose...
In this article, the separability of real normed spaces and its properties are mainly formalized. In the first section, it is proved that a real normed subspace is separable if it is generated by a countable subset. We used here the fact that the rational numbers form a dense subset of the real numbers. In the second section, the basic properties of the separable normed spaces are discussed. It...
We prove that every Banach space containing a complemented copy of c0 has an antiproximinal body for a suitable norm. If, in addition, the space is separable, there is a pair of antiproximinal norms. In particular, in a separable polyhedral space X, the set of all (equivalent) norms on X having an isomorphic antiproximinal norm is dense. In contrast, it is shown that there are no antiproximinal...
We investigate which definable separable metric spaces are countable dense homogeneous (CDH). We prove that a Borel CDH space is completely metrizable and give a complete list of zero-dimensional Borel CDH spaces. We also show that for a Borel X ⊆ 2 the following are equivalent: (1) X is Gδ in 2 ω , (2) X is CDH and (3) X is homeomorphic to 2 or to ω . Assuming the Axiom of Projective Determina...
Let K be a field of characteristic 6= 2 such that every finite separable extension of K is cyclic. Let A be an abelian variety over K. If K is infinite, then A(K) is Zariski-dense in A. If K is not locally finite, the rank of A over K is infinite.
Let K be a field of characteristic 6= 2 such that every finite separable extension of K is cyclic. Let A be an abelian variety over K. If K is infinite, then A(K) is Zariski-dense in A. Unless K ⊂ F̄p for some p, the rank of A over K is infinite.
Motivated by the work of Lovász and Szegedy on convergence limits dense graph sequences [10], we investigate finite trees with respect to sampling in normalized distance. We introduce dendrons (a notion based separable real trees) show that are exactly dendrons. also prove limit dendron is unique.
Let K be a field of characteristic 6= 2 such that every finite separable extension of K is cyclic. Let A be an abelian variety over K. If K is infinite, then A(K) is Zariski-dense in A. Unless K ⊂ F̄p for some p, the rank of A over K is infinite.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید