نتایج جستجو برای: dominating function
تعداد نتایج: 1222670 فیلتر نتایج به سال:
for any integer $kge 1$, a minus $k$-dominating function is a function $f : v (g)rightarrow {-1,0, 1}$ satisfying $sum_{winn[v]} f(w)ge k$ for every $vin v(g)$, where $n(v) ={u inv(g)mid uvin e(g)}$ and $n[v] =n(v)cup {v}$. the minimum ofthe values of $sum_{vin v(g)}f(v)$, taken over all minus$k$-dominating functions $f$, is called the minus $k$-dominationnumber and i...
Abstract: Let G=(V,E) be a graph and let f:V(G)→{0,1,2} be a function. A vertex v is protected with respect to f, if f(v)>0 or f(v)=0 and v is adjacent to a vertex of positive weight. The function f is a co-Roman dominating function, abbreviated CRDF if: (i) every vertex in V is protected, and (ii) each u∈V with positive weight has a neighbor v∈V with f(v)=0 such that the func...
1)فرض کنید g=(v,e) یک گراف ساده باشد.همسا یگی بسته رأس v?v را بصورت زیر نشان می دهیم : n[v]={u:uv?e}?{v} 2)تابعf:v?{-1,1} را تابع غالب علامت دار(signed dominating function یا به اختصار s.d.f) نامیم هرگاه به ازای هر v?v داشته باشیم f[v]=?_(u?n[v])?f(u) ?1:. 3)وزنfکه یکsdfمی باشد به صورت مقابل تعریف می شود: f(g)=?_(v?v)?f(v) . 4)می نیمم وزن تابع غالب علامتدار تعریف شده روی گراف g را با نماد?_s ...
For any integer , a minus k-dominating function is afunction f : V (G) {-1,0, 1} satisfying w) for every vertex v, where N(v) ={u V(G) | uv E(G)} and N[v] =N(v)cup {v}. The minimum of the values of v), taken over all minusk-dominating functions f, is called the minus k-dominationnumber and is denoted by $gamma_k^-(G)$ . In this paper, we introduce the study of minu...
A total Roman dominating function on a graph $G$ is a function $f: V(G) rightarrow {0,1,2}$ such that for every vertex $vin V(G)$ with $f(v)=0$ there exists a vertex $uin V(G)$ adjacent to $v$ with $f(u)=2$, and the subgraph induced by the set ${xin V(G): f(x)geq 1}$ has no isolated vertices. The total Roman domination number of $G$, denoted $gamma_{tR}(G)$, is the minimum weight $omega(f)=sum_...
Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...
A Roman dominating function on a graphG is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u ∈ V (G) for which f(u) = 0 is adjacent to at least one vertex v ∈ V (G) for which f(v) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The Roman domination number γR(G) of G is the minimum weight of a Roman dominating function on G. A Ro...
Let $kgeq 1$ be an integer, and let $G$ be a graph. A {it$k$-rainbow dominating function} (or a {it $k$-RDF}) of $G$ is afunction $f$ from the vertex set $V(G)$ to the family of all subsetsof ${1,2,ldots ,k}$ such that for every $vin V(G)$ with$f(v)=emptyset $, the condition $bigcup_{uinN_{G}(v)}f(u)={1,2,ldots,k}$ is fulfilled, where $N_{G}(v)$ isthe open neighborhood of $v$. The {it weight} o...
A subset X of edges of a graph G is called an edge dominating set of G if every edge not in X is adjacent to some edge in X . The edge domination number γ′(G) of G is the minimum cardinality taken over all edge dominating sets of G. An edge Roman dominating function of a graph G is a function f : E(G) → {0, 1, 2} such that every edge e with f(e) = 0 is adjacent to some edge e′ with f(e′) = 2. T...
We study, for a countably categorical theory T, the complexity of computing and the complexity of dominating the function specifying the number of n-types consistent with T.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید