نتایج جستجو برای: dynamic neural network
تعداد نتایج: 1183722 فیلتر نتایج به سال:
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
air pollution is a challenging issue in some of the large cities in developing countries. air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. several methods exist to analyze air quality. among them, we applied the dynamic neural network (tdnn) and radial basis function (rbf) methods to predict the concentrations of ground-level...
An artificial neural network can be used as an intelligent controller to control non-linear, dynamic system through learning. It can easily accommodate non-linearities and time dependencies. Most common multi-layer feed-forward neural networks have the drawbacks of large number of neurons and hidden layers required to deal with complex problems and require large training time. To overcome these...
the stability of learning rate in neural network identifiers and controllers is one of the challenging issues which attracts great interest from researchers of neural networks. this paper suggests adaptive gradient descent algorithm with stable learning laws for modified dynamic neural network (mdnn) and studies the stability of this algorithm. also, stable learning algorithm for parameters of ...
Objective (s): Artificial Neural Networks (ANN) are widely used for predicting systems’ behavior. GMDH is a type of ANNs which has remarkable ability in pattern recognition. The aim the current study is proposing a model to predict dynamic viscosity of silver/water nanofluid which can be used as antimicrobial fluid in several medical purposes.Materials and Methods: In order to have precise mode...
in recent decades artificial neural networks (anns) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. this paper presents the application of artificial neural networks to predict drought in yazd meteorological station. in this research, different archite...
The current method for composition measurement of an industrial distillation column includes an offline method, which is slow, tedious and could lead to inaccurate results. Among advantages of using online composition designed are to overcome the long time delay introduced by laboratory sampling and provide better estimation, which is suitable for online monitoring purposes. This paper pres...
Sloshing is a well-known phenomenon in liquid storage tanks subjected to base or body motions. In recent years the use of multiple vertical baffles for reducing the sloshing effects in tanks subjected to earthquake has not been taken into consideration so much. On the other hand, although some of the existing computer programs are capable to model sloshing phenomenon with acceptable accuracy, t...
Neural networks are applied to the system identification problems using adaptive algorithms for either parameter or functional estimation of dynamic systems. In this paper the neural networks' sensitivity to input values and connections' weights, is studied. The Reduction-Sigmoid-Amplification (RSA) neurons are introduced and four different models of neural network architecture are proposed and...
An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید