نتایج جستجو برای: elliptic partial differential equations
تعداد نتایج: 685986 فیلتر نتایج به سال:
The issue of convexity is fundamental in the theory of partial differential equations. We discuss some recent progress of convexity estimates for solutions of nonlinear elliptic equations arising from some classical problems in differential geometry. We first review some works in the literature on the convexity of solutions of quasilinear elliptic equations in Rn. The study of geometric propert...
The convergence of discrete approximations of generalized reflected backward stochastic differential equations with random terminal time in a general convex domain is studied. Applications to investigation obstacle elliptic problem with Neumann boundary condition for partial differential equations are given.
We establish existence, uniqueness and stability of transonic shocks for steady compressible non-isentropic potential flow system in a multidimensional divergent nozzle with an arbitrary smooth cross-section, for a prescribed exit pressure. The proof is based on solving a free boundary problem for a system of partial differential equations consisting of an elliptic equation and a transport equa...
In 2002, J.M.Rassias (Uniqueness of quasi-regular solutions for bi-parabolic elliptic bi-hyperbolic Tricomi problem, Complex Variables, 47 (8) (2002), 707-718) imposed and investigated the biparabolic elliptic bi-hyperbolic mixed type partial differential equation of second order. In the present paper some boundary-value problems with non-local initial condition for model and degenerate parabol...
Let A be a closed, densely defined operator in a Banach space X. There are several definitions of the "essential" spectrum of A (cf. [ l ] , [2]). According to Wolf [3], [4] it is the complement in the complex plane of the $-set of A. The $-set $A of A is the set of points X for which (a) a(A — X), the dimension of the null space of A — X, is finite (b) R(A —X), the range of A —X, is closed (c)...
We formulate and prove a non-local “maximum principle for semicontinuous functions” in the setting of fully nonlinear and degenerate elliptic integro-partial differential equations with integro operators of second order. Similar results have been used implicitly by several researchers to obtain comparison/uniqueness results for integro-partial differential equations, but proofs have so far been...
We present a finite volume discretization of the nonlinear elliptic problems. The discretization results in a nonlinear algebraic system of equations. A Newton-Krylov algorithm is also presented for solving the system of nonlinear algebraic equations. Numerically solving nonlinear partial differential equations consists of discretizing the nonlinear partial differential equation and then solvin...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید