نتایج جستجو برای: exponential second kind chebyshev functions
تعداد نتایج: 1203503 فیلتر نتایج به سال:
In this article, the second kind Chebyshev wavelet method is presented for solving a class of multi-order fractional differential equations (FDEs) with variable coefficients. We first construct the second kind Chebyshev wavelet, prove its convergence and then derive the operational matrix of fractional integration of the second kind Chebyshev wavelet. The operational matrix of fractional integr...
We study the problem of reconstructing a sparse polynomial in a basis of Chebyshev polynomials (Chebyshev basis in short) from given samples on a Chebyshev grid of [−1, 1]. A polynomial is called M -sparse in a Chebyshev basis, if it can be represented by a linear combination of M Chebyshev polynomials. For a polynomial with known and unknown Chebyshev sparsity, respectively, we present efficie...
Chebyshev polynomials of the first and the second kind in n variables z. , Zt , ... , z„ are introduced. The variables z, , z-,..... z„ are the characters of the representations of SL(n + 1, C) corresponding to the fundamental weights. The Chebyshev polynomials are eigenpolynomials of a second order linear partial differential operator which is in fact the radial part of the Laplace-Beltrami op...
Some properties of near-Toeplitz tridiagonal matrices with specific perturbations in the first and last main diagonal entries are considered. Applying the relation between the determinant and Chebyshev polynomial of the second kind, we first give the explicit expressions of determinant and characteristic polynomial, then eigenvalues are shown by finding the roots of the characteristic polynomia...
We study the kernels Kn,s(z) in the remainder terms Rn,s(f) of the Gauss-Turán quadrature formulae for analytic functions on elliptical contours with foci at ±1, when the weight ω is a generalized Chebyshev weight function. For the generalized Chebyshev weight of the first (third) kind, it is shown that the modulus of the kernel |Kn,s(z)| attains its maximum on the real axis (positive real semi...
Abstract We develop a diagrammatic categorification of the polynomial ring Z[x], based on geometrically defined graded algebra. This construction generalizes to some special functions, such as Chebyshev polynomials. Diagrammatic algebras featured in these categorifications lead first topological interpretations Bernstein-Gelfand-Gelfand reciprocity property.
The goal of this paper is to derive Hermite–Hadamard–Fejér-type inequalities for higher-order convex functions and a general three-point integral formula involving harmonic sequences polynomials w-harmonic functions. In special cases, estimates are derived various classical quadrature formulae such as the Gauss–Legendre Gauss–Chebyshev first second kind.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید