نتایج جستجو برای: flame structure
تعداد نتایج: 1582058 فیلتر نتایج به سال:
A simple, semi-analytic representation is developed for nuclear burning in Type Ia supernovae in the special case where turbulent eddies completely disrupt the flame. The speed and width of the “distributed” flame front are derived. For the conditions considered, the burning front can be considered as a turbulent flame brush composed of corrugated sheets of well-mixed flames. These flames are a...
Turbulent-flame speeds in methane–air mixtures were measured in a Taylor–Couette apparatus with counter-rotating cylinders, used to generate turbulence that is nearly homogeneous and isotropic over many integral length and time scales. While laminar-flame propagation is found to be influenced by the Darrieus– Landau instability and heat loss to the walls of the apparatus, turbulent-flame propag...
The large range of time and length scales involved in type Ia supernovae (SN Ia) requires the use of flame models. As a prelude to exploring various options for flame models, we consider, in this paper, high-resolution three-dimensional simulations of the small-scale dynamics of nuclear flames in the supernova environment in which the details of the flame structure are fully resolved. The range...
Premixed flames encounter gradients of mixture equivalence ratio in stratified charge engines, lean premixed gas-turbine engines, and a variety of other applications. In cases for which the scales—spatial or temporal—of fuel concentration gradients in the reactants are comparable to flame scales, changes in burning rate, flammability limits, and flame structure have been observed. This paper us...
Large eddy simulation of a three-dimensional spatially developing transitional free methane non-premixed flame is performed. The solver of the governing equations is based upon a projection method. The Smagorinsky model is utilized for the turbulent subgrid scale terms. A global reaction mechanism is applied for the simulation of methane/air combustion. Simulation results clearly illustrate the...
The structure and propagation properties of triple flames subject to buoyancy effects are studied numerically using a high accuracy scheme. A wide range of gravity conditions, heat release, and mixing widths for a scalar mixing layer are computed for ’upright’ and ’inverted’ triple flames (i.e, gravity pointed in parallel and in opposite directions of flame propagation). These results are used ...
This research addresses the flame structure of single aluminum particles burning in air with the emphasis on the transition from spherically symmetric to non-symmetric combustion regime. The unique feature of this work is that free motionless aluminum particles were produced and ignited in both normal and microgravity environments. That allowed us to observe whether the particle flame non-symme...
The Cellular Burning Regime in Type Ia Supernova Explosions II. Flame Propagation into Vortical Fuel
We investigate the interaction of thermonuclear flames in Type Ia supernova explosions with vortical flows by means of numerical simulations. In our study, we focus on small scales, where the flame propagation is no longer dominated by the turbulent cascade originating from large-scale effects. Here, the flame propagation proceeds in the cellular burning regime, resulting from a balance between...
This Note is concerned with the speed of propagation of a chemical reaction in a fast, steady and non uniform flow, which may apply to flame propagation in some instances. The structure of the flow is 1) a parallel shear flow with velocity perpendicular to the average front, where the flame speed is close to the maximum flow speed toward the fresh gases 2) a periodic cellular structure where th...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید