نتایج جستجو برای: fuzzy clustering algorithm

تعداد نتایج: 892692  

2015
Michal Konkol

In this paper, we describe fuzzy agglomerative clustering, a brand new fuzzy clustering algorithm. The basic idea of the proposed algorithm is based on the well-known hierarchical clustering methods. To achieve the soft or fuzzy output of the hierarchical clustering, we combine the single-linkage and completelinkage strategy together with a fuzzy distance. As the algorithm was created recently,...

Journal: :iranian journal of fuzzy systems 2008
e. mehdizadeh s. sadi-nezhad r. tavakkoli-moghaddam

this paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (fpso) and fuzzy c-means (fcm) algorithms, to solve the fuzzyclustering problem, especially for large sizes. when the problem becomes large, thefcm algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. the pso algorithm does find ago...

Journal: :iranian journal of fuzzy systems 2014
p. moallem n. razmjooy b. s. mousavi

potato image segmentation is an important part of image-based potato defect detection. this paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on genetic algorithm (ga) optimization and morphological operators. the proposed potato color image segmentation is robust against variation of background, distance and ...

Journal: :Inf. Sci. 2015
Miin-Shen Yang Yi-Cheng Tian

Keywords: Cluster analysis Fuzzy clustering Fuzzy c-means (FCM) Initialization Bias correction Probability weight a b s t r a c t Fuzzy clustering is generally an extension of hard clustering and it is based on fuzzy membership partitions. In fuzzy clustering, the fuzzy c-means (FCM) algorithm is the most commonly used clustering method. Numerous studies have presented various generalizations o...

2008
Dmitri A. Viattchenin

The paper deals with the problem of the fuzzy data clustering. In other words, objects attributes can be represented by fuzzy numbers or fuzzy intervals. A direct algorithm of possibilistic clustering is the basis of an approach to the fuzzy data clustering. The paper provides the basic ideas of the method of clustering and a plan of the direct possibilistic clustering algorithm. Definitions of...

2015
Dmitri A. Viattchenin Stanislau Shyrai

This paper introduces a novel intuitionistic fuzzy set-based heuristic algorithm of possibilistic clustering. For the purpose, some remarks on the fuzzy approach to clustering are discussed and a brief review of intuitionistic fuzzy set-based clustering procedures is given, basic concepts of the intuitionistic fuzzy set theory and the intuitionistic fuzzy generalization of the heuristic approac...

2014
Chen-Chia Chuang Jin-Tsong Jeng Sheng-Chieh Chang

Clustering algorithms have been widely used artificial intelligence, data mining and machine learning, etc. It is unsupervised classification and is divided into groups according to data sets. That is, the data sets of similarity partition belong to the same group; otherwise data sets divide other groups in the clustering algorithms. In general, to analysis interval data needs Type II fuzzy log...

2014
Jin Liu Haiying Wang Shaohua Wang

Traditional Fuzzy C-means segmentation algorithm requires to set clustering number in advance, and to calculate image clustering center by the iterative arithmetic. So the traditional algorithm is sensitive to the initial value and the computation complexity is high. In order to improve the traditional Fuzzy Cmeans algorithm, this paper presents an infrared image segmentation method using adapt...

2012
Prabhjot Kaur Pallavi Gupta Poonam Sharma

This paper presents a detailed study and comparison of some Kernelized Fuzzy C-means Clustering based image segmentation algorithms Four algorithms have been used Fuzzy Clustering, Fuzzy CMeans(FCM) algorithm, Kernel Fuzzy CMeans(KFCM), Intuitionistic Kernelized Fuzzy CMeans(KIFCM), Kernelized Type-II Fuzzy CMeans(KT2FCM).The four algorithms are studied and analyzed both quantitatively and qual...

Journal: :Journal of Intelligent and Fuzzy Systems 2014
Hadi Sadoghi Yazdi Mohammad GhasemiGol Sohrab Effati Azam Jiriani Reza Monsefi

This paper presents a new hierarchical tree approach to clustering fuzzy data, namely extensional tree (ET) clustering algorithm. It defines a dendrogram over fuzzy data and using a new distance between fuzzy numbers based on -cuts. The present work is based on hierarchical clustering algorithm unlike existing methods which improve FCM to support fuzzy data. The Proposed ET clustering algorithm...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید