نتایج جستجو برای: gaussian rbf neural network

تعداد نتایج: 903108  

Journal: :iranian journal of environmental sciences 0
gholamreza asadollahfardi department of civil engineering, kharazmi university, tehran, 43 mofateh ave, iran mojtaba tayebi jebeli department of civil engineering, kharazmi university, tehran, 43 mofateh ave, iran mahdi mehdinejad department of civil engineering, kharazmi university, tehran, 43 mofateh ave, iran mohammad javad rajabipour department of civil engineering, kharazmi university, tehran, 43 mofateh ave, iran

air pollution is a challenging issue in some of the large cities in developing countries. air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. several methods exist to analyze air quality. among them, we applied the dynamic neural network (tdnn) and radial basis function (rbf) methods to predict the concentrations of ground-level...

2007
Halis Altun Gökhan Gelen

In this study, the performance of two neural classifiers; namely Multi Layer Perceptron (MLP) and Radial Basis Fuction (RBF), are compared for a multivariate classification problem. MLP and RBF are two of the most widely neural network architecture in literature for classification and have successfully been employed for a variety of applications. A nonlinear scaling scheme for multivariate data...

2011
André Eugênio Lazzaretti Fábio Alessandro Guerra Hugo Vieira Neto Leandro dos Santos

The identification of non-linear systems by artificial neural networks has been successfully applied in many applications. In this context, the radial basis function neural network (RBF-NN) is a powerful approach for non-linear system identification. An RBF neural network has an input layer, a hidden layer and an output layer. The neurons in the hidden layer contain Gaussian transfer functions ...

2012
LIN CUI CAIYIN WANG BAOSHENG YANG

The current fault diagnosis methods based on conventional BP neural network and RBF neural network exist long training time, slow convergence speed and low judgment accuracy rate and so on. In order to improve the ability of fault diagnosis, this paper puts forward a kind of fault diagnosis method based on RBF Neural Network improved by PSO algorithm. By using particle swarm algorithm’s heurist...

1999
Kenneth J. McGarry John Tait Stefan Wermter John MacIntyre

Radial basis neural (RBF) networks provide an excellent solution to many pattern recognition and classi cation problems. However, RBF networks are also a local representation technique that enables the easy conversion of the hidden units into symbolic rules. This paper examines rules extracted from RBF networks. We use the iris ower classication task and a vibration diagnosis classi cation task...

G. Ghodrati Amiri, K. Iraji , P. Namiranian,

The Hartley transform, a real-valued alternative to the complex Fourier transform, is presented as an efficient tool for the analysis and simulation of earthquake accelerograms. This paper is introduced a novel method based on discrete Hartley transform (DHT) and radial basis function (RBF) neural network for generation of artificial earthquake accelerograms from specific target spectrums. Acce...

Journal: Pollution 2016

Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...

Journal: :Int. J. Computational Intelligence Systems 2009
Dusan Marcek Milan Marcek Jan Babel

We examine the ARCH-GARCH models for the forecasting of the bond price time series provided by VUB bank and make comparisons the forecast accuracy with the class of RBF neural network models. A limited statistical or computer science theory exists on how to design the architecture of RBF networks for some specific nonlinear time series, which allows for exhaustive study of the underlying dynami...

2003
Marius Kloetzer Octavian Pastravanu

A study on classification capability of neural networks is presented, considering two types of architectures with supervised training, namely Multilayer Perceptron (MLP) and Radial-Basis Function (RBF). To illustrate the classifiers’ construction, we have chosen a problem that occurs in real-life experiments, when one needs to distinguish between overlapping and Gaussian distributed classes. An...

Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید