نتایج جستجو برای: graded weakly classical prime submodules
تعداد نتایج: 299402 فیلتر نتایج به سال:
Let $G$ be a group with identity $e$, $R$ commutative $G$-graded ring unity $1$ and $M$ unital $R$-module. In this article, we introduce the concept of graded $1$-absorbing prime submodule. A proper $R$-submodule $N$ is said to if for all non-unit homogeneous elements $x, y$ element $m$ $xym\in N$, either $xy\in (N :_{R} M)$ or $m\in N$. We show that new generalization submodules at same time i...
Let G be a group with identity e. Let R be a G-graded commutative ring and let M be a graded R-module. The graded classical prime spectrum Cl.Specg(M) is defined to be the set of all graded classical prime submodule of M. The Zariski topology on Cl.Specg(M); denoted by ϱg. In this paper we establish necessary and sufficient conditions for Cl.Specg(M) with the Zariski topology to be a Noetherian...
Let $G$ be a group with identity $e$. $R$ $G$-graded commutative ring, $M$ graded $R$-module and $A\subseteq h(R)$ multiplicatively closed subset of $R$. In this paper, we introduce the concept $A$-2-absorbing submodules as generalization 2-absorbing $A$-prime $M.$ We investigate some properties class submodules.
Let $G$ be a group with identity $e$. $R$ commutative $G$-graded ring non-zero identity, $S\subseteq h(R)$ multiplicatively closed subset of and $M$ graded $R$-module. In this article, we introduce study the concept $S$-1-absorbing prime submodules. A submodule $N$ $(N:_{R}M)\cap S=\emptyset$ is said to prime, if there exists an $s_{g}\in S$ such that whenever $a_{h}b_{h'}m_{k}\in N$, then eith...
Let $G$ be an abelian group with identity $e$. $R$ a $G$-graded commutative ring identity, $M$ graded $R$-module and $S\subseteq h(R)$ multiplicatively closed subset of $R$. In this paper, we introduce the concept $S$-prime submodules modules over rings. We investigate some properties class their homogeneous components. $N$ submodule such that $(N:_{R}M)\cap S=\emptyset $. say is \textit{a }$S$...
Let G be a group with identity e. R G-graded commutative ring and M graded R-module. We introduce the concept of Ie-prime submodule as generalization prime for I =?g?G Ig fixed ideal R. give number results concerning this class submodules their homogeneous components. A proper N is said to if whenever rg ? h(R) mh h(M) rgmh IeN, then either (N :R M) or N.
Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. Suppose that $phi:S(M)rightarrow S(M)cup lbraceemptysetrbrace$ be a function where $S(M)$ is the set of all submodules of $M$. A proper submodule $N$ of $M$ is called an $(n-1, n)$-$phi$-classical prime submodule, if whenever $r_{1},ldots,r_{n-1}in R$ and $min M$ with $r_{1}ldots r_{n-1}min Nsetminusphi(N)$, then $r_{1...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید