نتایج جستجو برای: graph indices
تعداد نتایج: 278977 فیلتر نتایج به سال:
The Merrifield-Simmons index of a graph is defined as the total number of the independent sets of the graph and the Hosoya index of a graph is defined as the total number of the matchings of the graph. In this paper, we give formula for Merrifield-Simmons and Hosoya indices of some classes of cartesian product of two graphs K{_2}×H, where H is a path graph P{_n}, cyclic graph C{_n}, or star gra...
a graph that contains a hamiltonian cycle is called a hamiltonian graph. in this paper wecompute the first and the second geometric – arithmetic indices of hamiltonian graphs. thenwe apply our results to obtain some bounds for fullerene.
Todeschini et al. have recently suggested to consider multiplicative variants of additive graph invariants, which applied to the Zagreb indices would lead to the multiplicative Zagreb indices of a graph G, denoted by ( ) 1 G and ( ) 2 G , under the name first and second multiplicative Zagreb index, respectively. These are define as ( ) 2 1 ( ) ( ) v V G G G d v and ( ) ( ) ( ) ( ) 2...
The Zagreb indices are the oldest graph invariants used in mathematical chemistry to predict the chemical phenomena. In this paper we define the multiple versions of Zagreb indices based on degrees of vertices in a given graph and then we compute the first and second extremal graphs for them.
in this paper an algorithm for computing the balaban and randic indices of any simple connected graph was introduced. also these indices were computed for ipr c80 fullerene isomers, zigzag nanotubes and graphene by gap program.
The concept of geometric-arithmetic indices was introduced in the chemical graph theory. These indices are defined by the following general formula: ( ) 2 ( ) uv E G u v u v Q Q Q Q GA G , where Qu is some quantity that in a unique manner can be associated with the vertex u of graph G. In this paper the exact formula for two types of geometric-arithmetic index of Vphenylenic nanotube ar...
the relationship between the randic , wiener, hosoya , balaban, schultz indices, harary numbers anddistance matrix to enthalpies of formation (airf), heat capacity, (cp) , enthalpies of combustion (ah °c ),enthalpy of vaporization (ah °vap) and normal boiling points (bpk)of c2 c10 normal alkanes isrepresented
Structural codes vis-a-vis structural counts, like polynomials of a molecular graph, are important in computing graph-theoretical descriptors which are commonly known as topological indices. These indices are most important for characterizing carbon nanotubes (CNTs). In this paper we have computed Sadhana index (Sd) for phenylenes and their hexagonal squeezes using structural codes (counts). Sa...
A {it topological index} of a graph is a real number related to the graph; it does not depend on labeling or pictorial representation of a graph. In this paper, we present the upper bounds for the product version of reciprocal degree distance of the tensor product, join and strong product of two graphs in terms of other graph invariants including the Harary index and Zagreb indices.
The first and second Zagreb indices of a graph are equal, respectively, to the sum of squares of the vertex degrees, and the sum of the products of the degrees of pairs of adjacent vertices. We now consider analogous graph invariants, based on the second degrees of vertices (number of their second neighbors), called leap Zagreb indices. A number of their basic properties is established.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید