نتایج جستجو برای: hyers ulam rassias
تعداد نتایج: 2129 فیلتر نتایج به سال:
In this paper, we establish the Hyers–Ulam–Rassias stability of ring homomorphisms and ring derivations on fuzzy Banach algebras.
The stability problem of functional equations originated from a question of Ulam 1 concerning the stability of group homomorphisms. Hyers 2 gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki 3 for additive mappings and by Th. M. Rassias 4 for linear mappings by considering an unbounded Cauchy difference. The paper of Th. M. ...
In this paper, we prove the generalized Hyers-Ulam(or Hyers-Ulam-Rassias ) stability of the following composite functional equation f(f(x)-f(y))=f(x+y)+f(x-y)-f(x)-f(y) in various normed spaces.
for some positive constant ε depending only on δ. Sometimes we call f a δ-approximate solution of (1.1) and g ε-close to f . Such an idea of stability was given by Ulam [13] for Cauchy equation f(x+y) = f(x)+f(y) and his problem was solved by Hyers [4]. Later, the Hyers-Ulam stability was studied extensively (see, e.g., [6, 8, 10, 11]). Moreover, such a concept is also generalized in [2, 3, 12]...
In 1940, Ulam [13] proposed the Ulam stability problem of additive mappings. In the next year, Hyers [5] considered the case of approximately additive mappings f : E→ E′, where E and E′ are Banach spaces and f satisfies inequality ‖ f (x+ y)− f (x)− f (y)‖ ≤ ε for all x, y ∈ E. It was shown that the limit L(x) = limn→∞ 2−n f (2nx) exists for all x ∈ E and that L is the unique additive mapping s...
The generalized Hyers–Ulam–Rassias stability of generalized derivations on unital normed algebras into Banach bimodules is established. ∗2000 Mathematics Subject Classification. Primary 39B82; Secondary 46H25, 39B52, 47B47.
We use the fixed point method to prove the probabilistic Hyers–Ulam and generalized Hyers–Ulam–Rassias stability for the nonlinear equation f (x) = Φ(x, f (η(x))) where the unknown is a mapping f from a nonempty set S to a probabilistic metric space (X ,F,TM) and Φ : S×X → X , η : S → X are two given functions. Mathematics subject classification (2000): 39B52, 39B82, 47H10, 54E70.
in this paper, we prove the hyers-ulam stability of the symmetric functionalequation $f(ph_1(x,y))=ph_2(f(x), f(y))$ in random normed spaces. as a consequence, weobtain some random stability results in the sense of hyers-ulam-rassias.
In this paper, we study Hyers–Ulam and generalized Hyers–Ulam–Rassias stability of a system hyperbolic partial differential equations using Gronwall’s lemma Perov’s theorem.
in this paper, we prove the generalized hyers-ulam(or hyers-ulam-rassias ) stability of the following composite functional equation f(f(x)-f(y))=f(x+y)+f(x-y)-f(x)-f(y) in various normed spaces.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید