نتایج جستجو برای: influential observations
تعداد نتایج: 302704 فیلتر نتایج به سال:
The detection of influential observations has attracted a great deal of attention in last few decades. Most of the ideas of determining influential observations are based on single-case diagnostics with ith case deleted. The Cook’s distance are most commonly used among the other single-case diagnostics and successfully applied to various statistical models. In this article, we propose Cook’s di...
The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...
Outliers and influential observations have important effects on the regression analysis. The goal of this paper is to extend the mean-shift model for detecting outliers in case of ridge regression model in the presence of stochastic linear restrictions when the error terms follow by an autoregressive AR(1) process. Furthermore, extensions of measures for diagnosing influential observations are ...
Detecting outlying observations is an important step in any analysis, even when robust estimates are used. In particular, the robustified Mahalanobis distance is a natural measure of outlyingness if one focuses on ellipsoidal distributions. However, it is well known that the asymptotic chi-square approximation for the cutoff value of the Mahalanobis distance based on several robust estimates (l...
We provide sensitivity comparisons for two competing versions of the dimension reduction method principal Hessian directions (pHd). These comparisons consider the effects of small perturbations on the estimation of the dimension reduction subspace via the influence function. We show that the two versions of pHd can behave completely differently in the presence of certain observational types. Ou...
Evaluating Fit Indices for Multivariate t-Based Structural Equation Modeling with Data Contamination
In conventional structural equation modeling (SEM), with the presence of even a tiny amount of data contamination due to outliers or influential observations, normal-theory maximum likelihood (ML-Normal) is not efficient and can be severely biased. The multivariate-t-based SEM, which recently got implemented in Mplus as an approach for mixture modeling, represents a robust estimation alternativ...
In this paper we discuss the problem of testing equality and inequality constraints in symmetrical linear regression models. This class of models includes all symmetric continuous distributions, such as normal, Student-t, Pearson VII, power exponential and logistic, among others. It is commonly used for the analysis of data containing influential or outlying observations with responses supposed...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید