نتایج جستجو برای: iron chelators
تعداد نتایج: 143729 فیلتر نتایج به سال:
The importance of iron and copper in cancer biology has been well established. Iron plays a fundamental role in cellular proliferation and copper has been shown to be a significant cofactor for angiogenesis. Early observations with the chelator used for the treatment of iron overload, desferrioxamine, showed that it had promise as an anticancer agent. These results sparked great interest in the...
A series of bidentate hydroxypyridinone iron chelators that have therapeutic potential as oral iron chelators, have been studied systematically to determine which properties are the most critical for the mobilization of hepatocyte iron. The relationship between lipid solubility of the free and complexed forms of each chelator and hepatocyte iron release has been investigated as well as the cont...
Deferrioxamine B and rhodotorulic acid, iron-chelating agents of microbial origin, exerted a pronounced inhibitory effect on pathogenic Naegleria fowleri at microgram levels. This inhibition was diminished by adding iron to the chelators before incubation with Naegleria isolates. These and related microbial iron chelators occur naturally in the environment. This could be of considerable ecologi...
African trypanosomes exert significant morbidity and mortality in man and livestock. Only a few drugs are available for the treatment of trypanosome infections and therefore, the development of new anti-trypanosomal agents is required. Previously it has been shown that bloodstream-form trypanosomes are sensitive to the iron chelator deferoxamine. In this study the effect of 13 iron chelators on...
Inside the human body, reactive derivatives of oxygen, known as reactive oxygen species (ROS) such as the superoxide radical (O2•), hydroxyl radical (•OH) and hydrogen peroxide (H2O2), are constantly generated. The ROS easily cause oxidative damage to various biomolecules such as proteins, lipids and DNA leading to various disease conditions. Iron chelators function as antioxidants by scavengin...
A wide variety of studies in vitro, in vivo, and in clinical trials have demonstrated that the chelator currently used to treat iron overload disease, desferrioxamine, has anti-proliferative effects against both leukemia and neuroblastoma. However, the efficacy of desferrioxamine is severely limited due to its poor ability to permeate cell membranes and chelate intracellular iron pools. These s...
Iron chelators of the hydroxamate class arrest in vitro proliferation of malaria parasites end of mammalian cells. The factors determining the biological activity of the chelators have classically been attributed to the chelators' capacity for binding iron and to their ability to traverse membranes as free chelators and as chelator-iron complexes. We show in this work that the nature of the che...
Delivery of iron to K562 cells by diferric transferrin involves a cycle of binding to surface receptors, internalization into an acidic compartment, transfer of iron to ferritin, and release of apotransferrin from the cell. To evaluate potential feedback effects of iron on this system, we exposed cells to iron chelators and monitored the activity of the transferrin receptor. In the present stud...
Iron chelation therapy using iron (III) specific chelators such as desferrioxamine (DFO, Desferal), deferasirox (Exjade or ICL-670), and deferiprone (Ferriprox or L1) are the current standard of care for the treatment of iron overload. Although each chelator is capable of promoting some degree of iron excretion, these chelators are also associated with a wide range of well documented toxicities...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید