نتایج جستجو برای: k mean clustering algorithm

تعداد نتایج: 1685147  

The detection and prevention of crime, in the past few decades, required several years of research and analysis. However, today, thanks to smart systems based on data mining techniques, it is possible to detect and prevent crime in a considerably less time. Classification and clustering-based smart techniques can classify and cluster the crime-related samples. The most important factor in the c...

2018
Sachin Kumar Sumita Mishra Pallavi Asthana Pragya

Leukemia is a hematologic cancer which develops in blood tissue and triggers rapid production of immature and abnormal shaped white blood cells. Based on statistics it is found that the leukemia is one of the leading causes of death in men and women alike. Microscopic examination of blood sample or bone marrow smear is the most effective technique for diagnosis of leukemia. Pathologists analyze...

2014
Gursharan Saini Harpreet Kaur

In this paper, the proposed approach is an unique combination of two most popular clustering algorithms Particle Swarm Optimization (PSO) and K-Means to achieve better clustering result. Clustering is a technique of grouping homogeneous objects of a dataset with aim to extract some meaningful pattern or information. K-Means algorithm is the most popular clustering algorithm because of its easy ...

2012
D. S. RAJPUT R. S. THAKUR G. S. THAKUR NEERAJ SAHU

Clustering is one of the very important technique used for classification of large dataset and widely applied to many applications including analysis of social networking sites, aircraft accidental, company performance etc. In recent days, Communication, advertising through social networking sites are most popular and interactive strategy among the users. This research attempts to find the larg...

Journal: :CoRR 2014
Weiran Wang Miguel Á. Carreira-Perpiñán

In addition to finding meaningful clusters, centroid-based clustering algorithms such as K-means or mean-shift should ideally find centroids that are valid patterns in the input space, representative of data in their cluster. This is challenging with data having a nonconvex or manifold structure, as with images or text. We introduce a new algorithm, Laplacian K-modes, which naturally combines t...

Journal: :journal of computer and robotics 0
tahereh esmaeili abharian faculty of computer and information technology engineering, qazvin branch, islamic azad university, qazvin, iran mohammad bagher menhaj department of electrical engineering amirkabir university of technology, tehran, iran

knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering  in which there is no need to  be peculiar about how to select initial values. due to properly converting the task of optimization to an equivalent...

Journal: :Information Technology Journal 2008

Clustering is a widespread data analysis and data mining technique in many fields of study such as engineering, medicine, biology and the like. The aim of clustering is to collect data points. In this paper, a Cultural Algorithm (CA) is presented to optimize partition with N objects into K clusters. The CA is one of the effective methods for searching into the problem space in order to find a n...

Journal: :Jurnal Transformatika 2010

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید