نتایج جستجو برای: kernel estimator

تعداد نتایج: 78705  

1995
David J. Marchette Carey E. Priebe George W. Rogers Jeffrey L. Solka

A modification of the kernel estimator for density estimation is proposed which allows the incorporation of local information about the smoothness of the density. The estimator uses a small set of bandwidths rather than a single global one as in the standard kernel estimator. It uses a set of filtering functions which determine the extent of influence of the individual bandwidths. Various versi...

2008
Abdelkader Mokkadem Mariane Pelletier Yousri Slaoui

We apply the stochastic approximation method to construct a large class of recursive kernel estimators of a probability density, including the one introduced by Hall and Patil (1994). We study the properties of these estimators and compare them with Rosenblatt’s nonrecursive estimator. It turns out that, for pointwise estimation, it is preferable to use the nonrecursive Rosenblatt’s kernel esti...

2007
Sundarraman Subramanian Derek Bean

The kernel smoothed Nelson–Aalen estimator has been well investigated, but is unsuitable when some of the censoring indicators are missing. A representation introduced by Dikta, however, facilitates hazard estimation when there are missing censoring indicators. In this article, we investigate (i) a kernel smoothed semiparametric hazard estimator and (ii) a kernel smoothed “pre-smoothed” Nelson ...

2011
Christopher C. Chang Dimitris N. Politis

We consider finite-order moving average and nonlinear autoregressive processes with no parametric assumption on the error distribution, and present a kernel density estimator of a bootstrap series that estimates their marginal densities root-n consistently. This is equal to the rate of the best known convolution estimators, and faster than the standard kernel density estimator. We also conduct ...

Journal: :International Journal of Electrical and Computer Engineering (IJECE) 2021

Journal: :IEEE Trans. Information Theory 1999
Paul P. B. Eggermont Vincent N. LaRiccia

In the random sampling setting we estimate the entropy of a probability density distribution by the entropy of a kernel density estimator using the double exponential kernel. Under mild smoothness and moment conditions we show that the entropy of the kernel density estimator equals a sum of independent and identically distributed (i.i.d.) random variables plus a perturbation which is asymptotic...

Journal: :Journal of Multivariate Analysis 1996

2009
Kengo Kato

In this paper, we establish asymptotic normality of Powell’s kernel estimator for the asymptotic covariance matrix of the quantile regression estimator for both i.i.d. and weakly dependent data. As an application, we derive the optimal bandwidth that minimizes the approximate mean squared error of the kernel estimator.

2009
Nadine HILGERT Bruno PORTIER

Estimating the innovation probability density is an important issue in any regression analysis. This paper focuses on functional autoregressive models. A residual-based kernel estimator is proposed for the innovation density. Asymptotic properties of this estimator depend on the average prediction error of the functional autoregressive function. Sufficient conditions are studied to provide stro...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید