نتایج جستجو برای: kessel clustering algorithm
تعداد نتایج: 824731 فیلتر نتایج به سال:
Typicality degrees were defined in supervised learning as a tool to build characteristic representatives for data categories. In this paper, an extension of these typicality degrees to unsupervised learning is proposed to perform clustering. The proposed algorithm constitutes a GustafsonKessel variant and makes it possible to identify ellipsoidal clusters with robustness as regards outliers.
Some of the well-known fuzzy clustering algorithms are based on Euclidean distance function, which can only be used to detect spherical structural clusters. Gustafson-Kessel clustering algorithm and Gath-Geva clustering algorithm were developed to detect non-spherical structural clusters. However, the former needs added constraint of fuzzy covariance matrix, the later can only be used for the d...
In clustering we often face the situation that only a subset of the available attributes is relevant for forming clusters, even though this may not be known beforehand. In such cases it is desirable to have a clustering algorithm that automatically weights attributes or even selects a proper subset. In this paper I study such an approach for fuzzy clustering, which is based on the idea to trans...
The performance of clustering algorithms for image segmentation are highly sensitive to the features used and types of objects in the image, which ultimately limits their generalization capability. This provides strong motivation to investigate integrating shape information into the clustering framework to improve the generality of these algorithms. Existing shape-based clustering techniques ma...
Methods for supervised and unsupervised clustering and machine learning were studied in order to automatically model relationships between gene expression data and gene functions of the microorganism Escherichia coli. From a pre-selected subset of 265 genes (belonging to 3 functional groups) the function has been predicted with an accuracy of 63-71 % by various data mining methods described in ...
Methods for supervised and unsupervised clustering and machine learning were studied in order to automatically model relationships between gene expression data and gene functions of the microorganism Escherichia coli. From a pre-selected subset of 265 genes (belonging to 3 functional groups) the function has been predicted with an accuracy higher than 50 % by various data mining methods describ...
In this paper, the use of fuzzy models relating rainfall to catchment discharge is investigated for the Zwalm catchment in Belgium. The models are built along the lines of Gaweda’s method [4]. Since acceptable models were not obtained for this data set, the method was further adapted. The newly obtained models are of comparable performance as Takagi–Sugeno models based on the Gustafson–Kessel c...
Fuzzy logic is an organized and mathematical method of handling inherently imprecise concepts through the use of membership functions, which allows membership with a certain degree. It has found application in numerous problem domains. It has been used in the interval [0, 1] fuzzy clustering, in pattern recognition and in other domains. In this paper, we introduce fuzzy logic, fuzzy clustering ...
The inverted pendulum is a highly nonlinear and open loop unstable system. To develop an accurate model of the inverted pendulum, different linear and nonlinear methods of identification will be used. However one of the problems encountered during modeling is the collection of experimental data from the inverted pendulum system. Since the output data from the unstable system does not show enoug...
Fuzzy C-Means (FCM) and hard clustering are the most common tools for data partitioning. However, the presence of noisy observations in the data may cause generation of completely unreliable partitions from these clustering algorithms. Also, application of the Euclidean distance in FCM only produces spherical clusters. In this paper, a new noise-rejection clustering algorithm based on Mahalanob...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید