نتایج جستجو برای: keywords local cohomology
تعداد نتایج: 2422039 فیلتر نتایج به سال:
Let (R,m) be a commutative noetherian local ring. In this paper we investigate the existence of a finitely generated R-module of finite Gorenstein dimension when R is Cohen-Macaulay. We study the Gorenstein injective dimension of local cohomology of complexes and next we show that if R is a non-Artinian Cohen-Macaulay ring, which does not have the minimal multiplicity, then R has a finite gener...
We define in this paper the notion of gerbed tower. This enables us to interpret geometrically cohomology classes without using the notion of n-category. We use this theory to study sequences of affine maps between affine manifolds, and the cohomology of manifolds. keywords gerbes, non abelian cohomology. Classification A.M.S. 18D05, 57R20.
We introduce an idea for generalization of a local cohomology module, which we call a local cohomology module with respect to a pair of ideals (I, J), and study their various properties. Some vanishing and nonvanishing theorems are given for this generalized version of local cohomology. We also discuss its connection with the ordinary local cohomology.
Let (R,m) be a local ring, I a proper ideal of R and M a finitely generated R-module of dimension d. We discuss the local homology modules of H I (M). When M is Cohen-Macaulay, it is proved that H d m(M) is co-CohenMacaulay of N.dimension d and H x d (H m(M)) = M̂ where x = (x1, . . . , xd) is a system of parameters for M . 2000 Mathematics Subject Classification: 13C14, 13D45
We introduce a generalization of the notion of depth of an ideal on a module by applying the concept of local cohomology modules with respect to a pair of ideals. We also introduce the concept of $(I,J)$-Cohen--Macaulay modules as a generalization of concept of Cohen--Macaulay modules. These kind of modules are different from Cohen--Macaulay modules, as an example shows. Also an art...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید