نتایج جستجو برای: lie derivation

تعداد نتایج: 77475  

2000
Yucai Su Xiaoping Xu Hechun Zhang

We classify all the pairs of a commutative associative algebra with an identity element and its finite-dimensional commutative locally-finite derivation subalgebra such that the commutative associative algebra is derivation-simple with respect to the derivation subalgebra over an algebraically closed field with characteristic 0. Such pairs are the fundamental ingredients for constructing genera...

2007
R. D. SCHAFER

In this note we propose a definition of inner derivation for nonassociative algebras. This definition coincides with the usual one for Lie algebras, and for associative algebras with no absolute right (left) divisor of zero. I t is well known that all derivations of semi-simple associative or Lie algebras over a field of characteristic zero are inner. Recent correspondence with N. Jacobson has ...

Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.

Journal: :Journal of Algebra 1979

Journal: :São Paulo Journal of Mathematical Sciences 2017

Journal: :Transactions of the American Mathematical Society 1937

2005
Yucai Su Linsheng Zhu

It is proved that the derivation algebra of a centerless perfect Lie algebra of arbitrary dimension over any field of arbitrary characteristic is complete and that the holomorph of a centerless perfect Lie algebra is complete if and only if its outer derivation algebra is centerless. Key works: Derivation, complete Lie algebra, holomorph of Lie algebra Mathematics Subject Classification (1991):...

H. Wang N. Jing Q. G. Li

Let $mathfrak{L}$ be the Virasoro-like algebra and $mathfrak{g}$ itsderived algebra, respectively. We investigate the structure of the Lie triplederivation algebra of $mathfrak{L}$ and $mathfrak{g}$. We provethat they are both isomorphic to $mathfrak{L}$, which provides twoexamples of invariance under triple derivation.

N. Ghobadipour

A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...

Journal: :Int. J. Math. Mathematical Sciences 2006
Vincenzo De Filippis

Throughout this note, R will be always a prime ring of characteristic different from 2 with center Z(R), extended centroid C, and two-sided Martindale quotient ring Q. Let f : R→ R be additive mapping of R into itself. It is said to be a derivation of R if f (xy)= f (x)y + x f (y), for all x, y ∈ R. Let S⊆ R be any subset of R. If for any x, y ∈ S, f ([x, y])= [ f (x), y] + [x, f (y)], then the...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید