نتایج جستجو برای: linear objective function optimization
تعداد نتایج: 2310998 فیلتر نتایج به سال:
Computing the exact ideal and nadir criterion values is a very important subject in multi-objective linear programming (MOLP) problems. In fact, these values define the ideal and nadir points as lower and upper bounds on the nondominated points. Whereas determining the ideal point is an easy work, because it is equivalent to optimize a convex function (linear function) over a con...
this paper presents a methodology for design of instrumentation sensor networks in non-linear chemical plants. the method utilizes a robust extended kalman filter approach to provide an efficient dynamic data reconciliation. a weighted objective function has been introduced to enable the designer to incorporate each individual process variable with its own operational importance. to enhance the...
Dynamic optimization with a nonsmooth, nonconvex technology: the case of a linear objective function
the main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. recently there have been attempts for using artificial neural networks (anns) in optimizationproblems and some types of anns such as hopfield network and boltzm...
multi-objective optimization with preemptive priority subject to fuzzy relation equation constraints
this paper studies a new multi-objective fuzzy optimization prob- lem. the objective function of this study has dierent levels. therefore, a suitable optimized solution for this problem would be an optimized solution with preemptive priority. since, the feasible domain is non-convex; the tra- ditional methods cannot be applied. we study this problem and determine some special structures related...
In this paper, we considered a Stochastic Interval-Valued Linear Fractional Programming problem(SIVLFP). In this problem, the coefficients and scalars in the objective function are fractional-interval, and technological coefficients and the quantities on the right side of the constraints were random variables with the specific distribution. Here we changed a Stochastic Interval-Valued Fractiona...
Optimization using radial basis functions as an interpolation tool in trust-region (ORBIT), is a derivative-free framework based on fully linear models to solve unconstrained local optimization, especially when the function evaluations are computationally expensive. This algorithm stores the interpolation points and function values to using at subsequent iterations. Despite the comparatively ad...
The multi-objective optimization model studied in this paper deals with simultaneous minimization of finitely many linear functions subject to an arbitrary number of uncertain linear constraints. We first provide a radius of robust feasibility guaranteeing the feasibility of the robust counterpart under affine data parametrization. We then establish dual characterizations of robust solutions of...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید