نتایج جستجو برای: liouville derivative

تعداد نتایج: 69269  

Journal: :computational methods for differential equations 0
amjad ali university of malakand kamal shah university of malakand rahmat ali khan department of mathematics university of malakand

this paper is devoted to the study of establishing sufficient conditions forexistence and uniqueness of positive solution to a class ofnon-linear problems of fractional differential equations. the boundary conditionsinvolved riemann-liouville fractional order derivative and integral. further, the non-linear function $f$ containfractional order derivative which produce extra complexity. thank to...

In this article, we develop the distributed order fractional hybrid differential equations (DOFHDEs) with linear perturbations involving the fractional Riemann-Liouville derivative of order $0 < q < 1$ with respect to a nonnegative density function. Furthermore, an existence theorem for the fractional hybrid differential equations of distributed order is proved under the mixed $varphi$-Lipschit...

2014
R. HENRÍQUEZ UDITA N. KATUGAMPOLA

The author (Appl. Math. Comput. 218(3):860-865, 2011) introduced a new fractional integral operator given by, ( I a+f ) (x) = ρ1−α Γ(α) ∫ x a τρ−1f(τ) (xρ − τρ)1−α dτ, which generalizes the well-known Riemann-Liouville and the Hadamard fractional integrals. In this paper we present a new fractional derivative which generalizes the familiar Riemann-Liouville and the Hadamard fractional derivativ...

2009
Raj Kumar Biswas Siddhartha Sen

1 Professor and author of correspondence, Phone: +91 3222-283084, Fax: +91 3222 255303, Email: [email protected] ABSTRACT A numerical technique for the solution of a class of fractional optimal control problems has been proposed in this paper. The technique can used for problems defined both in terms of Riemann-Liouville and Caputo fractional derivatives. In this technique a Reflection Op...

Journal: :Boletim da Sociedade Paranaense de Matemática 2021

In this paper we investigate the question of existence nonnegative solution to some fractional liouville equation. Our main tools based on well known Krasnoselskiis xed point theorem.

Journal: :computational methods for differential equations 0
mehmet ekici department of mathematics, faculty of science and arts, bozok university, yozgat, turkey abdullah sonmezoglu department of mathematics, faculty of science and arts, bozok university, 66100 yozgat, turkey elsayed m. e. zayed mathematics department, faculty of science, zagazig university, zagazig, egypt

in this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (fpdes) in the sense of modified riemann-liouville derivative. with the aid of symbolic computation, we choose the space-time fractional zakharov-kuznetsov-benjamin-bona-mahony (zkbbm) equation in mathematical physics with a source to illustrate the validity a...

2015
Tohru Morita Ken-ichi Sato Hari M. Srivastava

We compare the Riemann–Liouville fractional integral (fI) of a function f(z) with the Liouville fI of the same function and show that there are cases in which the asymptotic expansion of the former is obtained from those of the latter and the difference of the two fIs. When this happens, this fact occurs also for the fractional derivative (fD). This method is applied to the derivation of the as...

In this paper‎, ‎a modern method is presented to solve a class of fractional optimal control problems (FOCPs) indirectly‎. ‎First‎, ‎the necessary optimality conditions for the FOCP are obtained in the form of two fractional differential equations (FDEs)‎. ‎Then‎, ‎the unknown functions are approximated by the hybrid functions‎, ‎including Bernoulli polynomials and Block-pulse functions based o...

2012
Mohammed Al-Refai

We correct a recent result concerning the fractional derivative at extreme points. We then establish new results for the Caputo and Riemann-Liouville fractional derivatives at extreme points.

2015
HONGXIA WANG BIN ZHENG

In this paper, based on the fractional Riccati equation, we propose an extended fractional Riccati sub-equation method for solving fractional partial differential equations. The fractional derivative is defined in the sense of the modified Riemann-Liouville derivative. By a proposed variable transformation, certain fractional partial differential equations are turned into fractional ordinary di...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید