نتایج جستجو برای: means clustering
تعداد نتایج: 438049 فیلتر نتایج به سال:
Due to the progressive growth of the amount of data available in a wide variety of scientific fields, it has become more difficult to manipulate and analyze such information. In spite of its dependency on the initial settings and the large number of distance computations that it can require to converge, the K-means algorithm remains as one of the most popular clustering methods for massive data...
The k-means++ algorithm is the state of the art algorithm to solve k-Means clustering problems as the computed clusterings are O(log k) competitive in expectation. However, its seeding step requires k inherently sequential passes through the full data set making it hard to scale to massive data sets. The standard remedy is to use the k-means‖ algorithm which reduces the number of sequential rou...
This paper reflects the results of an implementation of the K-means algorithm on U.N survey data on people’s priorities, organized by country. The dataset includes 16 features for each country, with each feature corresponding to a different societal issue. Each country has a rating in the range of [0, 1] that indicates how important a particular feature or issue is to that country’s people– the...
Landslide databases and input parameters used for modeling landslide hazard often contain imprecisions and uncertainties inherent in the decision-making process. Dealing with imprecision and uncertainty requires techniques that go beyond classical logic. In this paper, methods of fuzzy k -means classification were used to assign digital terrain attributes to continuous landform classes whereas ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید