نتایج جستجو برای: minlp method
تعداد نتایج: 1630656 فیلتر نتایج به سال:
This contribution describes the development of various strategies for the dynamic optimization of a batch reactor in order to obtain a robust model, suitable for nonlinear (NLP) or mixed-integer nonlinear programming (MINLP) problems. Different Orthogonal Collocation on Finite Element (OCFE) schemes and various formulations of the MINLP model have been studied to increase its robustness. It has...
Many industrial problems can be naturally formulated using Mixed Integer Nonlinear Programming (MINLP) models and can be solved by spatial Branch&Bound (sBB) techniques. We study the impact of two important parts of sBB methods: bounds tightening and branching strategies. We extend a branching technique originally developed for MILP, reliability branching, to the MINLP case. Motivated by the de...
The global optimization of mixed integer non-linear programming (MINLP) problems is an active research area in many engineering fields. In this work, Differential Evolution (DE), a hybrid Evolutionary Computation method, is used for the optimization of nonconvex MINLP problems and a comparison is made among the algorithms based on hybrid of Simplex & Simulated Annealing (MSIMPSA), Genetic Algor...
Generalized Disjunctive Programming (GDP) has been introduced recently as an alternative model to MINLP for representing discrete/continuous optimization problems. The basic idea of GDP consists of representing discrete decisions in the continuous space with disjunctions, and constraints in the discrete space with logic propositions. In this paper, we describe a new convex nonlinear relaxation ...
Recently, the area of Mixed Integer Nonlinear Programming (MINLP) has experienced tremendous growth and a flourish of research activity. In this article we will give a brief overview of past developments in the MINLP arena and discuss some of the future work that can foster the development of MINLP in general and, in particular, robust solver technology for the practical solution of problems.
Process design is usually approached by considering the steady-state performance of the process based on an economic objective. Only after the process design is determined are the operability aspects of the process considered. This sequential treatment of the process design problem neglects the fact that the dynamic controllability of the process is an inherent property of its design. This work...
Branch-and-Bound (B&B) is perhaps the most fundamental algorithm for the global solution of convex Mixed-Integer Nonlinear Programming (MINLP) problems. It is well-known that carrying out branching in a non-simplistic manner can greatly enhance the practicality of B&B in the context of Mixed-Integer Linear Programming (MILP). No detailed study of branching has heretofore been carried out for MI...
The paper presents the Mixed-Integer Non-Linear Programming (MINLP) approach to structural optimization. MINLP is a combined discrete/continuous optimization technique, where discrete binary 0-1 variables are defined for optimization of discrete alternatives and continuous variables for optimization of parameters. The MINLP optimization is performed through three steps: i.e. the generation of a...
Abstract: In order to improve the efficiency for solving MINLP problems, we present in this paper three computational strategies. These include multiple-generation cuts, hybrid methods and partial surrogate cuts for the Outer Approximation and Generalized Benders Decomposition. The properties and convergence of the strategies are analyzed. Five new MINLP algorithms are described based on the pr...
Many optimization problems involve integer and continuous variables that can be modeled as mixed integer nonlinear programming (MINLP) problems. This has led to a wide range of applications, in particular in some engineering areas. Here, we provide a brief overview on MINLP, and present a simple idea for a future nonconvex MINLP solution technique.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید